





Introduction

Image segmentation plays a fundamental role in a wide range
of computer vision applications, such as medical image analy-
sis, robotic perception, video surveillance, etc. It provides key
information for the overall understanding of an image. Many
traditional image segmentation methods have been proposed
in the literature, including thresholding, region-based seg-
mentation, region growing, k-means ckustering, watershed
methods and edge detection segmentation, etc [1, 2]. These
methods use the knowledge of image processing and mathe-
matics to segment the image in a simple and fast way. How-
ever, their accuracy cannot be guaranteed in terms of details.
In recent years, deep learning methods have given rise to a
new generation of image segmentation models with remark-
able improvements in the field, as they achieve a higher accu-
racy rate than traditional and classical methods. In this note,
we present the advances of deep learning architectures in the
field of image segmentation. We describe in detail the vari-
ants of deep learning models used for semantic image seg-
mentation and compare some of the most widely used meth-
ods for a real use case of multi-class semantic segmentation
of Drosophila images.

This note is organized as follows. First, we define image
segmentation and its variants. Next, we review existing su-
pervised deep learning segmentation methods following their
architecture design. Then, we compare some of these deep
learning architectures for multi-class image segmentation of
Drosophila as a use case. Finally, we end with a conclusion
that summarizes the note.

1 What is image segmentation?

Image segmentation is defined as a specific image processing
technique used to divide an image into two or more meaning-
ful regions. It is the process of assigning a label to each pixel
in the image, so that pixels with the same label are linked by
a visual or semantic property. There are three types of im-
age segmentation: semantic, instance and panoptic segmen-
tation. In semantic segmentation, each pixel is classified into
one of the predefined classes so that pixels belonging to the
same class belong to a single semantic entity in the image.
In this mode, the result cannot differentiate or count two or
more objects belonging to the same entity (see Fig. 1.b). How-
ever, in instance segmentation, where each distinct object is
segmented separately, can typically handle the tasks related
to countable things. It can detect each object or instance of
a class present in an image and assign it a unique identifier
(Fig. 1.c). Panoptic segmentation is a combination of instance
segmentation and semantic segmentation. It assigns two la-
bels to each pixel in an image - (i) a semantic label (ii) an in-
stance identifier. Pixels with the same label are considered to
belong to the same semantic class and the instance identifiers
differentiate its instances (see Fig. 1.d).
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(a) image

(b) semantic segmentation

(c) instance segmentation (d) panoptic segmentation

Figure 1: Types of image segmentation.

2 Supervised deep learning segmen-
tation architectures

The continued success of deep learning techniques in a va-
riety of advanced computer vision tasks, such as supervised
convolutional neural networks (CNNs) for image classifica-
tion, has prompted exploration of the capabilities of these net-
works for pixel-level labeling problems such as segmentation.
Briefly, CNN is a type of neural network designed to work
with images [3]. It consists of a succession of layers: an in-
put layer (the image at the input of the network), an output
layer with an output activation function (the decision of the
network) and a hidden layer composed of many convolutional
layers, correction layers (activation functions), pooling layers
and fully connected or dense layers. Further description of
the CNN architecture and its components could find in the
previous note [4].

The main advantage of the deep learning techniques is
their ability to learn appropriate feature representations of
the data for a given problem rather than handcrafted fea-
tures. This gives them an advantage over traditional meth-
ods, which require expertise, effort, and often too much fine
tuning to make them work for a given scene. These advanced
deep learning segmentation methods could be organized into
the following categories:

+ Fully Convolutional Network (FCN) Models

+ Encoder-Decoder Based Models

» Multiscale and Pyramid Network Based Models
+ Dilated Convolutional Models

» Transformer based Models

+ Other Models

In the following, we present the popular CNN-based back-
bone networks and an overview of the segmentation archi-
tectures of each category.




2.1 Backbone networks

Several deep networks have made significant contributions to
the field and have become standards for a wide range of appli-
cations. These networks are currently used as building blocks
(backbones) for many segmentation architectures. In this
section, we briefly describe a number of these networks, in
particular AlexNet [5], VGG-16 [6], ResNet [7], among other
CNN-based deep architectures, such as GooglLeNet [8], Mo-
bileNet [9], etc.

AlexNET it is the pioneering deep CNN network that won
the ILSVRC-2012 data challenge with an accuracy of 84.6%.
AlexNEt architecture described in [5] is relatively simple.
It consists of five convolutional layers followed by a Recti-
fied Linear Units (ReLUs) as non-linearities, max-pooling and
three fully-connected (dense) layers. Figure 2 shows that
AlexNET architecture,
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Figure 2: AlexNet Convolutional Neural Network architec-
ture.

Visual Geometry Group (VGG-16) is a model introduced
by the Visual Geometry Group (VGG) from the University of
Oxford. It was among the top-5 winner of the ILSVRC-2013
Challenge with an accuracy of 92.7%. As shown in the fig-
ure 3, VGG16 architecture consists of 16 layers: 13 convolu-
tion layers divided into 5 convolutional blocks and 3 dense
layers. Each convolutional layer is followed by a ReLu acti-
vation function and each convolution block is followed by a
max pooling of 2 x 2.The main advantage of the VGG-16 ar-
chitecture is that it uses a stack of convolution layers with
small receptive fields in the first layers instead of a few layers
with large receptive fields. This allows for fewer parameters
and more non-linearities between them. Thus making the de-
cision function more discriminative and the model easier to
train.
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Figure 3: VGG16 architecture

Residual neural network (ResNet) It is released by Mi-
crosoft Research and won the ILSVRC-2016 challenge with an
accuracy of 96.4%. The network is well known due to its deep
architecture, with variants having 50 or 152 layers (ResNet50,
ResNet152). The central idea of ResNet is that it introduces
a residual block that skips one or more layers (see figure 4).
These blocks address the problem of training a really deep ar-
chitecture by introducing identity skip connections, so that
layers can copy their inputs to the next layer. This ensures
that the next layer learns something new and different from
what the input has already encoded. In addition, this kind of
connections help overcoming the vanishing gradients prob-
lem.
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Figure 4: Residual block principle.

2.2 Fully Convolutional Network (FCN)
Models

FCN is one of the first proposed models for end-to-end se-
mantic segmentation [10] . It was first implemented on the
PASCAL VOC 2011 segmentation dataset challenge [11] and
achieved a pixel accuracy of 90.3% and a mean 10U of 62.7%
(see evaluation metrics description in the section 3). In the
FCN architecture, the standard image classification models
such as VGG, AlexNet or GoogleNet are converted to fully
convolutional by replacing all fully connected (dense) layers
with a 1 x 1 convolution layer such that the model outputs




a spatial segmentation map instead of classification scores
(see Fig. 5). FCN uses the transposed convolution layers (see
Fig. 6) to upsample the feature map of the last convolution
layer and restore it to the same size of the input image. There
are three variants of the FCN: the FCN8, the FCN16 and the
FCN32. In FCN32, the output of the CNN network are di-
rectly upsampled to the size of the imput image. In FCN8 and
FCN16, skip connections are used in which feature maps from
the final layers of the model are upsampled and fused with
feature maps of earlier layers, the model combines seman-
tic information (from deep, coarse layers) and appearance
information (from shallow, fine layers) in order to produce
accurate and detailed segmentations (see Fig. 7).

Figure 5: The structure of the fully convolutional network
(FCN).
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Figure 6: Principle of the transposed convolution, also known
as convolution with fractional strides. The process is achieved
by dilating the input space.

Figure 7: FCN32, FCN16 and FCN8. Skip connections com-
bine coarse and fine information to generate detailed segmen-
tation. Figure reproduced from [10]

Despite the success and flexibility of the FCN model, it
has some limitations such as it is too computationally expen-
sive for real-time inference, it does not account useful global
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context information, and it is not easily generalizable to 3D
images.

2.3 Encoder-Decoder Based Models

Encoder-decoders [12] are a family of models that learn to
map data-points from an input domain to an output domain
via a two-stage network (Fig. 8): the encoder takes the image
as input and output a compressed representation in the latent
space while the task of the decoder is to semantically project
the discriminative features from the latent space (lower reso-
lution) learnt by the encoder onto the pixel space (higher res-
olution) and generate pixel by pixel segmentation prediction
to output a segmentation map.
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Figure 8: A simple Encoder-Decoder model architecture.

The majority of DL-based segmentation models are based
on the encoder-decoder architecture. Generally speaking, all
take a classification network as an encoder, such as VGG16,
and remove its fully connected layers (see Fig. 3). This part of
the network produces low-resolution image representations
or feature maps. The challenge is to learn how to decode or
map these low-resolution images into pixel-by-pixel predic-
tions for segmentation via a decoder network. The connection
of encoder-decoder parts has been the focus of researchers
in recent years, leading to a wide variety of encoder-decoder
based architectures available in the literature. In the follow-
ing, we describe some of these architectures among other de-
veloped models.

SegNet [13], a fully convolutional encoder-decoder archi-
tecture for image segmentation (see Fig. 9)) was launched in
2015 to compete with the FCN network on complex indoor
and outdoor images segmentation. It consists of a VGG16
network as an encoder, and a corresponding decoder network
followed by a pixel-wise classification layer via a softmax out-
put activation function. The key in SegNet lies in the way
the decoder upsamples the low-resolution input feature maps.
Specifically, it uses the pooling indices computed in the max
pooling step of the corresponding encoder to perform non-
linear up sampling via unpooling as shown in the figure 10.
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Figure 9: SegNet architecture: the left part is the encoder and
the right part is the decoder. Skip connections are used to
transmit the pooling indices from the encoder to the corre-
sponding block in the decoder part. Reproduced from [13].
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Figure 10: Upsampling process in the SegNet decoder using
the 2 x 2 max pooling locations.

A limitation of the SegNet is the loss of fine-grained im-
age information, due to the loss of resolution through the en-
coding process. This limitation were efficiently overcome by
the Unet network [14], that were initially developed for med-
ical/biomedical image segmentation, but is now also being
used outside the medical domain, The winner of the 2015 I1SBI
cell tracking challenge is characterized by an encoder with a
series of convolution and max pooling layers (5 convolution
blocks each containing two convolution layers with ReLu ac-
tivation and followed by 2 x 2 max pooling). The decoding
layer contains a mirrored sequence of convolutions and trans-
posed convolutions ( see Fig. 6). It implements skip connec-
tions to copy the uncompressed feature maps from encoding
blocks to be concatenated with the feature maps of their mir-
rored counterparts in the decoding blocks, as shown in the
figure 11. These skip connections improve detail retention.
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Figure 11: Unet architecture. Reproduced from [14].

Other extensions of the U-Net have been developed for
different types of images and problem fields. For instance, the
Unet-3D [15], a U-Net based architecture for 3D images seg-
mentation, the Recurrent residual convolutional neural net-
work based on U-net (R2Unet) [16], the use of residual in-
stead of convolutional blocks in the encoder and decoder net-
work (Linknet) [17], the Unet with attention mechanism that
learns to softly weight multiscale features at each pixel loca-
tion (Attention-unet) [18], etc. Other variants of Unet have
also been developed for segmentation of nuclei and cellular
fluorescence microscopy images, such as 2D/3D Stardist [19]
and Cellpose [20].

2.4 Multiscale and Pyramid Network Based
Models

Multiscale image analysis is of great interest in computer vi-
sion, especially in natural scene segmentation applications
where the size of the object of interest is highly unpredictable.
For example, real-world objects can vary in size, and they can
appear larger or smaller depending on their location relative
to the camera. In a standard CNN architecture small-scale
features are captured in the early layers, while as one pro-
gresses deeper in the network, the features become more spe-
cific for larger objects. Therefore, it is often useful to extract
information from feature maps at different scales to create
segmentations that are generalized and scale invariant.

One of the best-known architectures that meets these
conditions is the Feature Pyramid Network (FPN) [21] de-
veloped by Facebook Al Research (FAIR). FPN is originally
designed for object detection and has also been applied to
image segmentation [22]. The architecture of the FPN is
shown in figure 12. The FPN architecture for image seg-
mentation is composed of a bottom-up pathway, a top-down
pathway and lateral connections. The bottom-up pathway
(encoder) is the typical convolutional network for feature ex-
traction and it could be used as VGG or ResNet backbone
network. It is composed of many convolution blocks each has
many convolution layers. As we move up, the spatial dimen-
sion is reduced by 1/2 (i.e., double the stride) and extracts




the low-resolution feature map layers. In the lateral connec-
tions, a 1 x 1 convolution is applied on the featue maps of
each bottom-up convolution block to reduce channel depth
to 256. These are added element-wise with the upsampled
feautre map layers using nearest neighbors upsampling from
the top-down pathway. The latest is the decoding part, the
feature maps combines these low-resolution feature map lay-
ers that has semantically strong features, with the previously
upsampled image that has semantically weak features. Due
to this, the feature pyramid reaches semantic features at all
levels. In the third column (see Fig. 12), a 3 x 3 convolution
is applied two times to the feature map layers at each stage
of the top-down pathway in order to reduce the aliasing ef-
fect of upsampling. This step genarates a feature map layers
of 128 channels at each level that are upsampled to 1/4 and
concatenated together. As a next step, the number of output
channels is reduced to K, with K is the number of classes,
utilizing 1 x 1 convolutions and softmax activation function.
Finally, these predictions are upsampled to the original image
size using bi-linear interpolation.
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Figure 12: lllustration of the Feature Pyramid network (FPN)
architecture for semantic image segmentation.

Another commonly used architecture as a multi-scale
image segmentation model is the Pyramid Scene Parsing
Network (PSPNet) [23]. Scene parsing is the process of seg-
menting and analyzing an image into various visual areas
corresponding to semantic categories. The main characteris-
tic of PSPNet is the use of the Pyramid Pooling Module (PPM).
This module helps the model to capture the global context of
the image, allowing it to classify pixels based on the global
information. In the original design of PSPNet (see Fig. 13),
multiple patterns are extracted from the input image using
a ResNet (other backbone networks are also supported) as a
feature extractor, with a dilated network (see next section 2.5).
These feature maps are then fed into a pyramid pooling mod-
ule to distinguish patterns of different scales which are 6, 3, 2,
and 1for colours green, blue, orange and red respectively. The
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feature maps is pooled at these scales using average pooling
then they are convolved with 1x 1filters to reduce the feature
depth. The outputs of the pyramid levels are upsampled and
concatenated with the initial feature maps to capture both lo-
cal and global context information. Finally, the feature layer
is classified by 1 x 1 convolution kernel with a softmax, thus,
the prediction result of each pixel in the image is obtained.
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Pyramid Pooling Module
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Figure 13: PSPNet architecture. Reproduced from [24].

Beside these two models, other models are also used for
multiscale image segmentation, such as the RefineNet [25],
the Dynamic Multiscale Filters Network (DMNet) [26], etc.

2.5 Dilated Convolutional Models

Despite the fact that pixel-wise segmentation is effective,
there is still a limitation that can affect the performance of
the segmentation. This concerns the small size of the ker-
nels, which does not capture all the contextual information
of the input image and focuses only on the local informa-
tion. In a standard image classification pipeline, this prob-
lem can be solved by using pooling layers that increase the
sensory area of the kernels by downsampling the original im-
age. However, in segmentation, this reduces the sharpness of
the segmented output. The alternative use of large kernels
tends to slow down the computational process, as it greatly
increases the number of model training parameters. This is-
sue has been addressed through the dilated (a.k.a. “atrous”)
convolution [27]. This technique uses the dilation rate as a
new parameter for the standard convolutional layer that al-
lows contextual information to be extracted by increasing the
receptive field size without increasing the number of parame-
ters. For example, a 3 x 3 kernel with a dilation rate r = 2 will
have the same receptive field size as a 5 x 5 kernel while using
only 9 parameters instead of 25, thus enlarging the receptive
field without increasing the computational cost (see Fig. 14).
By the way, it is important to note that standard convolutions
are only 1-dilation rate (r = 1).




Figure 14: A 3 x 3 dilated convolution kernels with various
dilation rates.

Segmentation models based dilated convolutions are com-
monly used for real-time image segmentation applications.
Some of the most important include the DeepLab family by
Google [28], multiscale context aggregation [27], the Efficient
Network (ENet) [29], etc. The DeepLab family is one of the
most efficient segmentation models and includes 4 versions:
v1,v2,v3 and v3+. The Deeplabv1and DeepLabv2 (see Fig. 15)
use dilated (atrous) convolution to address the decreasing res-
olution in the network caused by max-pooling and striding.
They use also the fully connected Conditional Random Field
(CRF) [30] to fine tune the segmentation results by consid-
ering the label of a pixel is not only dependent on its own
intensity values but also the values of neighboring pixels (see
Fig. 16).
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Figure 15: Deeplabv1&v2 model architecture. First, the input
image goes through the network with the use of dilated con-
volutions. Then the output from the network is bilinearly in-
terpolated and goes through the fully connected CRF to fine
tune the result in order to obtain the final predictions.
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Figure 16: Impact of Fully connected CRFs to fine tune the
final segmentation prediction. Top: Score map (input before
softmax function), Bottom: Prediction map (output of soft-
max function). With 10 iteration of CRF, those small areas
with different colors around the aeroplane are smoothed out
successfully.

Deeplabv2 is implemented with an additional key feature,
the Atrous Spatial Pyramid Pooling (ASPP), which probes an
incoming convolutional feature layer with filters at multiple
sampling (dilation) rates, capturing objects as well as multi-
scale image context to robustly segment objects at multiple

scales (see Fig. 17).
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Figure 17: ASPP principle: parallel atrous convolution with
different rate applied to the input feature map, and fused to-
gether.

For the DeepLabv3 [31], apart from using atrous convo-
lution, it uses an improved ASPP module by including batch
normalization and image-level features without the use of
CRF as used in V1and V2. In its implementation, the output
from the ASPP network is passed through a 1 x 1 convolution
to get the actual size of the image which will be the final seg-
mented mask for the image after interpolation (see Fig.18).
These improvements help in extracting dense feature maps
for long-range contexts by increasing the receptive field expo-
nentially without losing the spatial dimension and improves
performance on segmentation tasks. However, it increases the
computational time.
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Figure 18: The structure of atrous spatial pyramid pooling
module used in Deeplabv3. The module consists of two steps
including (a) atrous convolution and (b) image Global average
pooling (image-level features), and produces the final output
by a convolution layer after concatenation of feature maps

Finally, DeepLabV3+ [32] (Fig. 19) is implemented with
an encoder-decoder architecture including dilated separable
convolution composed of a depthwise convolution (spatial
convolution for each channel of the input) and pointwise con-
volution (1 X 1 convolution with the depthwise convolution
as input). This fixes the limitation of DeeplLabV3 related to
the high computational time to process high-resolution im-
ages. The application of the depthwise separable convolution
to both atrous spatial pyramid pooling and decoder modules
results in a faster and stronger encoder-decoder network for
semantic segmentation.
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Figure 19: Deeplabv3+ model architecture. Reproduced
from [32]

2.6 Transformers based Models

Transformers [33] are deep learning models that are primar-
ily used for natural language processing (NLP) tasks [34].
The amazing results of transformers on NLP, thanks to their
powerful self-attention mechanism capabilities (see this pa-
pers [35, 36] for attention mechanism description), have in-
trigued researchers who have explored their application to
computer vision problems such as image classification and
segmentation. Transformers allow the extraction of global
context and long-range dependencies between input elements
and support parallel processing compared to CNN methods
that tend to focus on local details. Furthermore, their simple
design allow multiple modalities (e.g., images, videos, text,
and speech) to be processed using similar processing blocks
and demonstrates excellent scalability to very large capacity
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networks and huge data sets compared to CNN based meth-
ods.

Many Transformers-based deep learning models have
been developed in the literature for semantic image segmen-
tation. For instance, TransUnet [37], is a U-shaped encoder-
decoder architecture similar to Unet, that instead of using full
CNN blocks, employs an hybrid CNN-Transformer encoder.
This allows learning both the high-resolution spatial infor-
mation from the CNNs and the global contextual information
from the Transformers. In its design, the vision Transformers
(ViT , see more details here [38] regarding the ViT architec-
ture) are fed with the feature maps created by the CNN as
input instead of the raw images. As shown in the figure 20,
the CNN is firstly used as a feature extractor to generate the
feature maps. For each level of the feature extractor, the out-
put feature maps is then concatenated to the decoder path
of the same level. Then, the feature maps are vectorized (to-
kenized) into a 2D embedding of shape (npatcs, D) by linear
projection, and D is the total length of the embedding. After
obtaining the embeddings, they are fed into 12 Transformer
layers to encode less short-range and more long-range infor-
mation from the image. Each layer of the Transformer uses
multi-head self-attention (MSA) and multi-layer perceptron
(MLP) modules. Lastly, to prepare for the up-sampling path,
the output is reshaped to (D, H/16, W/16). H/16 and W/16
mean that the heights and widths by this time have been
shrunk by 16 times because of the previous operations. The
decoding path is similar to the Unet decoder. At the output,
a softmax function is used to generate the final segmentation
map.

Unlike TransUNet, other models uses purely Transformers
in their architectures such as Swin-Transformer [39], Swin-
Unet [40], Segmenter [41], Segformer [42], etc. In this note
we will focus on describing the Swin-Unet. More details about
the other architectures could be found in the original papers.
Swin-Unet, as shown in figure 21,is a pure Transformer-based
U-shaped architecture that consists of encoder, bottleneck,
decoder, and skip connections. They are all built based on
Swin Transformer block (Hierarchical Vision Transformer us-
ing Shifted Windows) [39]). As shown in figure 22, a Swin
Transformer block is composed of Layer Normalisation (LN),
multi-head self attention module, residual connection and 2-
layer MLP with GELU activation function (Gaussian Error
Linear Unit) as non-linearity. The window based multi-head
self attention (W-MSA) module and the shifted window-based
multi-head self attention (SW-MSA) module are applied in the
two successive Transformer blocks, respectively. The advan-
tage of using Swin Transformers in the segmentation archi-
tecture is that the shifted windows divides the image into
non-overlapping sub-windows, resulting in better computa-
tional speed and improves the performance and efficiency of
Transformers by achieving scale-invariance.

Briefly, the architecture design of Swin-Unet is as the fol-
lowing. In the encoder part, the input image is split into non-
overlapping patches with patch size of 4 X 4in order to trans-
form it into sequence embeddings. In this way, the feature




dimension of each patch becomes 4 x 4 x 3 = 48 (images
originally RGB with three channels). Furthermore, a linear
embedding layer is applied to project feature dimension into
arbitrary dimension (represented as C in Fig. 21). The trans-
formed patch tokens pass through several Swin Transformer
blocks and patch merging layers to generate the hierarchical
feature representations. Specifically, patch merging layer is
responsible for downsampling and increasing dimension, and
Swin Transformer block is responsible for feature representa-
tion learning.

The decoder is composed of Swin Transformer blocks and
patch expanding layer. The extracted context features are
fused with multiscale features from encoder via skip connec-
tions to complement the loss of spatial information caused by
downsampling. In contrast to patch merging layer, a patch
expanding layer is specially designed to perform upsampling.
The patch expanding layer reshapes feature maps of adjacent
dimensions into a large feature maps with 2x upsampling.
At the end, the last patch expanding layer is used to perform
4x upsampling to restore the dimension of the feature maps
similar to the input image (W xH). Then, a linear projection
layer is applied on these upsampled features to output the
pixel-level segmentation predictions.
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Figure 20: TransUnet architecture design. In the ViT ar-
chitecture (left), MSA stands for Multi-head Self-Attention,
and MLP stands for Multi-Layer Perceptron. Reproduced
from [37].
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swin transformer block. Reproduced from [40]
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2.7 Other Models

Previously, we described some of the well-known categories
of deep learning semantic segmentation models. Many more
popular deep learning segmentation architectures are also
available [43]. For example, BUT NOT LIMITED TO, R-
CNN-based models that are mainly used to solve object de-
tection and instance segmentation problems such as Mask-
RCNN [44], the recurrent neural network (RNN) based mod-
els that are useful in modeling the short/long term dependen-




cies among pixels such as Data Associated Recurrent Neu-
ral Networks (DA-RNNs) [45] , Generative Adversial Net-
works (GANs) based segmentation models [46] , attention-
based models such as Reverse Attention Network (RAN) [47],
CNN with active contour models such as Deep Active Lesion
Segmentation (DALS) [48], point cloud-based models such
as PointNet [49], multi-modal data fusion models such as
FuseNet [50] which combines RGB and depth images (RGB-
D) for semantic segmentation, as well as other derived models
for panoptic segmentation such as the Panoptic Feature Pyra-
mid Network (PFPN) [44].

3 Segmentation evaluation metrics

Deep learning segmentation models are typically evaluated in
terms of quantitative accuracy and computation time. While
computation speed is a valuable metric as some systems need
to meet the requirements of real-time or high-throughput
applications, providing the exact inference time of methods
can be considered meaningless as it is highly dependent on
hardware (GPU and computer) and backend implementation
(Keras, Tensorflow,etc). So far, the evaluation of segmenta-
tion models has mainly focused on quantitative metrics and
the most common ones are described below:

Pixel Accuracy (PA)

Is the simplest metric used to evaluate the segmentation. It is
computed as the ratio of the correctly classified pixels on the
total number of pixels. For a total number of classes C+ 1, the
pixel accuracy is defined as follow,

C
PA = 2 ico Pii

Ziu ch:u Pij ’

With pj; represent the amount of pixels of class i correctly
predicted as class i and p;; is the number of pixels of class i
predicted as belonging to class j.

U]

Mean Pixel Accuracy (MPA)

is an extension of pixel accuracy (PA) in which the ratio of cor-
rect pixels is computed in a per-class basis and then averaged
over the total number of classes.

MPA=—I—Z g @)

Intersection over Union (loU)

Also know as the Jaccard Index which is a standard metric
used for segmentation evaluation. It is defined as the area of
intersection between the predicted segmentation map A and
the ground truth map B, divided by the area of the union be-
tween the two maps (see also Fig. 23).
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loU = J(A, B) =

(©)

Area of Overlap .

Area of Union

loU =

Figure 23: Principle of the Intersection over Union (loU) met-
ric.

Mean loU (mloU) The mloU is an extension of the loU met-
ric. It is defined as the average loU over all classes.

F1-score

The F1-score measure is defined as the harmonic mean be-
tween recall and precision at the pixel level and it is computed
as follow,

F1 5 Precision x Recall @
-score = 2, s
Precision + Recall

; o TP TP
with the Precision = 7. and Recall = 55", where

TP, FP and FN are the true positive, false positive and false
negative respectively.

Dice coefficient

This metric is commonly used in medical image segmenta-
tion. It is defined as twice the overlap area of the predicted
maps and the ground truth map divided by the total number
of pixels.

2x|AN B|
Dice » ————, (5)
|Al + 8]
It is very similar to the loU (Eq. 3) and when applied to bi-
nary segmentation maps (only two classes 0 and 1), with fore-
ground as the positive class, the Dice coefficient is identical to
the F1 score (Eq. 4).

TP
Dice = il = Fl-score. (6)
2TP+ FP+FN

4 Deep learning segmentation loss
functions

The purpose of the loss function in a deep learning model is
to quantify the difference between predictions and ground
truths. The choice of the loss function is extremely impor-
tant when designing image segmentation-based deep learn-
ing architecture, as it triggers the learning process of the algo-
rithm. In the following, we summarize some of the semantic
segmentation-based loss functions that have been commonly
used and proven to provide state-of-the-art results in different
domains [51].




Cross Entropy

Cross-entropy is defined as a measure of the difference be-
tween two probability distributions for a given random vari-
able or set of events. It is widely used for classification objec-
tive and espacially for equal data distribution among classes
scenarios, and as segmentation is pixel level classification it
works well. We can define two different loss fonctions of the
cross entropy: the binary cross entropy (BCE) or log loss, and
the categorical cross entropy (CCE). The BCE is used for bi-
nary classification problems (only two classes 0 and 1), and it
is defined as follow:

BCE(y, §) - —ly logg) + (1 y) log1 = 9)). (1)
with y refers to the predicted probability value and y refers
to the ground truth label. This can be extended to multi-class
problems, and the categorical cross entropy loss (CCE) is com-
puted as:

CCE(y,p) = —; ZZ Yiclog(pic), ®)

i=1 ¢=0

where y;. uses a one-hot encoding scheme of ground truth
labels, p; . is a matrix of predicted probability values for each
class. Indices c and i iterate over all classes and pixels, respec-
tively with N is the total number of pixels in 1D.

Cross entropy loss is based on minimising pixel-wise er-
ror, where in class imbalanced situations, leads to over-
representation of larger objects in the loss, resulting in poorer
quality segmentation of smaller objects. Thus other extan-
sions of the cross entropy are developed to deal with this prob-
lem and they are explained below.

Weighted and balanced categorical cross en-
tropy

The WCCE is a variant of CCE that is used to solve the prob-
lem of overfitting due to the class imbalance (skewed data)
that speed the convergence of the loss function. It is used
to increase or decrease the relative penalty of a probabilis-
tic false negative for an individual class by using a coefficient
(weights). WCCE is defined as,

WCCE(y,p) = — Z Z weyiclog(pic) 9)

i=1 ¢=0

with w, is the weight of the class ¢. The w, value can be
used to tune false negatives and false positives. For exam-
ple, w. > 1 reduces the number of false negatives, similarly
to decrease the number of false positives, w, < 1 is used.
Concerning the class-balanced Loss, the weights w, are set
in proportion to the inverse of the number of samples per
class: e = gupeor oeror e However, While these versions
of loss functions ba(ances the importance of positive/negative
example of the classes, but it does not differentiate between
easy/hard examples.
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Focal loss (FL)

Focal loss (FL) [52] can be seen as an extension of the cross en-
tropy. It is designed to work well for highly imbalanced classes
problems. In principle, it down-weights the contribution of
easy examples and enables the model to focus more on learn-
ing hard misclassified examples. Thus, ensuring that predic-
tions on hard examples improve over time rather than becom-
ing overly confident with easy ones. The focal loss is imple-
mented by adding a modulating factor to the cross-entropy
loss as shown below:

N C

FL(y,p) = —% YD adi—pidyicloglpi,  (10)

i=1 c=0

where y > 0 is the focusing parameter that reduces the rela-
tive loss for well-classified examples and could be set via cross
validation. In the special case of y = 0, the focal loss becomes
equivalent to cross entropy. Similarly, a. is a weighting factor
that generally range from [0,1].It can be set by inverse class
frequency or treated as a hyperparameter.

Dice loss

The dice loss is derived from the dice coefficient evaluation
metric (Eq. 5). It is widely used in medical image segmenta-
tion tasks to address the data imbalance problem. However, it
only addresses the problem of foreground/background imbal-
ance, but neglects another imbalance between easy and diffi-
cult examples that also severely affects the training process.
The dice loss is computed as : 1 — Dice.

5 Use Case: Semantic segmentation
of Drosophila images

5.1 Dataset preparation

In order to compare between the previousely presented deep
learning arhitectures, we used the Drosophila neural tissue
image annotated dataset [53]. It contains 20 images of 1024 x
1024 pixels and their ground truth acquired with a serial sec-
tion Transmission Electron Microscopy (ssTEM). It consists of
3 classes: cytoplasm, cell membrane and mitochondria (see
Fig. 24). In order to fit with the GPU size, we split the original
images into 320, 256 x 256 pixels, no overlapping images. We
used 230 for training, 58 for validation and 32 for testing the
deep learning segmentation architectures.
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Figure 24: An example of 2D Drosophila image and its grund
truth mask with the three classes to be segmented.

5.2 Studied deep learning architectures and
their configuration

For the multiclass semantic segmentation of the Drosophila
images and without any claim of optimality, we choosed
to compare the performance of the following deep learning
methods:

e FCNB8 from fully convolutional models category,

e SegNet, Unet, R2Unet, Attention-Unet and Linknet
from encoder-decoder models category,

e PSPNet and FPN from multiscale and pyramid network
models category,

e Deeplabv3+ from dilated convolutional models cate-
gory,

e TransUnet and Swin-Unet from transformers based
models category,

For a fair comparision between the architectures, we trained
models with the same hyperparameters, data augmentation
process and loss function. The configurations are described
below:

Backbone network We unified the CNN using VGG 16 as
the backbone for all architectures. Only transformer-based
architectures, the TransUnet and Swin-Unet, were used as
the original implementation described previously in the sec-
tion 2.6.

Models Hyperparameters The models were trained with
the following hyperparameter configurations: batch size = 4,
maximum number of epochs = 300, initial learning rate (LR) =
0.001 with the introduction of the ReduceLROnPlateau call-
back function to monitor the evolution of validation loss with
the following parameters: factor = 0.8, patience = 5, delta
min=0.0001, and LR min=0.0001. This callback is used to re-
duce the learning rate when a metric has stopped improving.
At the output of each model a Softmax output activation func-
tion were used to predict 3 pixel classes.
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Regularization We also trained the models with the same
regularisation such as early stopping by monitoring the val-
idation loss with patient=7 and checkpoint to save the best
weights of the models in order to avoid overfitting.

Data augmentation Data augmentation process were ap-
plied on the training data to generate sufficient amount of in-
put images and their ground truth for the training. The data
augmentation operation applied to this use case included hor-
izontal and vertical flipping, random rotational transforma-
tion between 0 and 179° and zoom in up to 50%. During this
step, the same transformation is applied to each input image
and its corresponding ground truth mask (see Fig. 25).

Other transformations could be applied to the dataset an
order to augment the amount of data such as brigthness, color
or contrast modification, simulation of camera distortion such
as optical distortions and blur, noise addition, etc. However,
this type of data augmentation should be applied only on the
input image without modifying the GT mask. In addition, it
must be chosen correctly without affecting the main problem
in question, e.g, if the main discrimination between image
regions is based on color representation, data augmentation
based on varying the brightness/illumination or colors could
affect the segmentation efficiency.

Loss function The used dataset contains highly imbal-
aced classes with the following pixel frequencies: Cytoplasm:
76.9%, Membrane: 17.7 % , Mitochondria: 5.4 % . For this
reason, we used the focal loss (Eq. 10) as a loss function to
train the models. We used optimal hyperparameters of the
focal loss function as reported in the original study [52] with
Qe =025 =2

Evaluation metrics We used for the models evaluation the
mean intersection over union (mloU) and the intersection
over union (loU) per class (Eq. 3). The inference time were
also computed for each segmentation model and they were
obtained with an 11th Gen Intel Core i7-11800H 2.30 GHz pro-
Cessor.

5.3 Results and discussion

The quantitative evaluation of the applied segmentation mod-
els is shown in the table 1. The reported mloU and loU
per class metrics are averaged over all 32 test images. Fig-
ure 26 shows a visual illustration of the predicted segmenta-
tion maps at the output of the models for some test images
along with their ground truth. Several remarks can be made
from the results:

Evalutation by models category First, the FCN8 based
on a fully convolutional network (cyan colored line in the ta-
ble) gives the lowest performance (mloU = 0.727) among the
tested networks. This is due to the fact that it does not con-
sider useful global contextual information and is not able to
retrieve fine details from microscopy images. This model may
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Figure 25: An exemple of data augmentation of an image and its GT mask.

be more efficient for other topics such as indoor/outdoor im-
age segmentation where image objects contains less struc-
tured details.

Second, models based on encoder-decoder architectures
(blue colored lines in the table) perform well in segmentation.
In these models, the skip connection is used at all stages of the
network to transfer the feature maps (low-level and high-level
information) from the encoder to the decoder. With the ex-
ception of SegNet, which uses pooling indices instead of fea-
ture maps for upsampling. This explains why its mloU = 0.785
is lower than the mloU of other models from the same family.

Third, with respect to the multi-scale and pyramid
network-based models (red colored lines in the table), FPN
outperforms PSPNet with a mloU of 0.833 against 0.795 for
PSPNet. We infer that the arrangement of pixels in the masks
contains strong semantic locality and a special features that
was captured perfectly by FPN than by PSPNet.

Fourth, the DeepLabv3+ model based on dilated convolu-
tion (green colored line) leads to a good segmentation perfor-
mance with a mloU = 0.821. This shows the advantage of
dilated convolution to retain more global contextual informa-
tion by expanding the receptive field.

Fifth, among the studied transformer-based models (or-
ange colored lines), the Swin-Unet based on Swin transform-
ers outperforms the TransUnet model based on the CNN and
the vision Transformer (ViT) with a mloU = 0.816 against
mloU = 0.778. The results show that the hierarchical repre-
sentation obtained by the Swin transformers and the shifted
window approach effectively transmits the information into
the local window and thus improves the efficiency of the
model.

Global evaluation The best computed performance be-
longs to R2Unet with mloU = 0.840, slightly better than Unet
with mloU = 0.837 and FPN with mloU = 0.833. These re-
sults are supported by the fact that the R2Unet model uses
the power of U-Net, residual networks, and recurrent con-
volutional neural networks (RCNNs) to preserve fine image
details and provide better feature representation. In addi-
tion, R2Unet yields the most well balanced loU per class seg-
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mentation results with IOUcytoptasm = 0.926, I0Ucelt membrane =
0.747, 10Upitochondria = 0.848.

Evaluation based on inference speed Table 2 shows
the average inference time (in seconds) computed from the
Drosophila test images for each employed architecture. The
fastest model is DeepLabv3+ with an average time of 0.009
second, thanks to the dilated convolution design that ex-
pands the receptive field without increasing computational
costs. The DeepLabv3+ method also delivers acceptable seg-
mentation performance with mloU = 0.821. However, when
considering the balance between the per-class loU measure-
ments, it results in a low loU = 0.683 for the segmenta-
tion of the cell membrane class. Thus, it cannot be consid-
ered as a trade-off for efficiency-speed. The best model in
this sense is Swin-Unet, thanks to the shifted window strat-
egy, it results in an average inference time of 0.015 second
with an mloU = 0.816 and per class segmentation scores of
;OUCytop!asm = 0.918, IOUCeH membrane = 0.713, ’OUMr'mfhandna -
0.818.

Final models selection As a consequence, this compari-
son allows us to consider that R2Unet is the best model for
Drosophila neural tissue image segmentation with an aver-
age inference time of 0.074 seconds. By contrast, for high-
throughput segmentation applications, the Swin-Unet might
be a better choice with 5x faster than the R2Unet.

Conclusion

In this note, we presented an overview of deep learning seg-
mentation methods based on their categories and architec-
ture design. We also compared some of the described deep
learning models for multi-class semantic segmentation of
Drosophila microscopy images. The results of the compara-
tive study conducted in this note favor R2Unet for offline seg-
mentation and Swin-Unet for high-throughput applications.
However, as the supervised deep learning is a data-driven pro-
cess that solve problems by learning from data, using a differ-
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Figure 26: lllustration of the predicted segmentation maps at the output of the deep learning models. Misclassified pixels are
colored in yellow for better visualization.
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Table 1: Mean loU and loU per class metrics of the tested deep learning segmentation methods computed from Drosophila test
images. Each color represent segmentation models category (cyan: fully convolutional based model, light blue: encoder-decoder
based models, red: multiscale and pyramid based models, green: dilated convolutional based model, orange: Transformers based

models) . Values in bold represent the best model

Methods mloU 10U per class
Cytoplasm Cell membrane Mitochondria

FCN8 0.727 0.858 0.518 0.805
Segnet 0.785 0.897 0.647 0.811
Unet 0.837 0.926 0.745 0.841
R2Unet 0.840 0.926 0.747 0.848
Attention-Unet 0.827 0.924 0.731 0.825
Linknet 0.821 0.922 0.732 0.848
PSPNet 0.795 0.902 0.676 0.807
FPN 0.833 0.924 0.742 0.887
DeepLabv3+ 0.821 0.909 0.683 0.870
TransUnet 0.778 0.909 0.702 0.724
Swin-Unet 0.816 0.918 0.713 0.818

Table 2: Average inference time (in seconds) computed from the Drosophila test images for the tested deep learning segmentation

methods. Value in bold represent the fastest model.

Methods FCN8  Segnet Unet R2Unet  Atten-Unet  Linknet PSPNet FPN  Deeplabv3+ TransUnet  Swin-Unet
Time 0.086 0.0 0.079  0.074 0.086 0.064 0.083  0.009 0.021 0.015
ent dataset, segmentation problem, or selection of hyperpa- microscopy cell images classification. https://

rameters could lead to different model selection than those
obtained in this note.

Furthermore, we used the focal loss to handle class imbal-
ance for the use case studied in this note. It would be interest-
ing to study other loss functions and their impacts on training
and testing performance. In addition, deep learning methods
for object detection were not discussed in this note. These
methods are applied in a wide range of applications and some
extensions are also used for instance segmentation problems,
so it would be interesting to revisit this topic in future work.
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