

Introduction

The aim of this note is to introduce some recent development
in numerical solving of partial differential equations (PDE)
with the use of deep neural networks. We particularly focus
on PDE that arise in option pricing,

In a first part, we introduce the notion of partial differ-
ential equation and give some example of such equation in
finance. In a second part, we briefly develop some classical
numerical methods such as Finite difference, its convergence
and limits. Then we introduce the Galerkin method and its
deep learning version which is a deterministic approach par-
ticularly adapted for high dimension PDE. In a last part, we
introduce the probabilistic approach with Backward stochas-
tic differential equation representation of PDE and a first ap-
proach to solve it with Neural Networks. Finally, we test these
different approaches to option pricing problems.

1 General overview of PDE

1.1 Some definitions

A PDE represents the relation between a multivariate func-
tion and its partial derivatives. It can be defined as a general
expression of the form :

F[Dk u(x), D"~ u(x), .., Du(x), u(x), x) =

where x € Q C R", u: Q — R is an unknown function and
D/ a collection of partial derivatives of order j:

o'= (%)
Ox;'...0%; it i=j

A PDE might be subject to boundary conditions.
the Dirichlet boundary condition is expressed as u(x)
g(x) Vx € 02 where g is a known function and 922 is the
boundary of its domain Q. Other boundary conditions exists
such as Neumann (conditions on the first derivative of u) or
Cauchy (conditions on both value and first derivative).

PDE can be classified into different forms:

+ linear PDE are of the form 37, ., ai(x)D/u(x)— f(x) = 0

« semi-linear PDE are of the form ZIJH a(x)D/ u(x) —
_}"(D"_1 u,.,Du, u, x] =0

+ quasi-linear PDE : E|j|=k a(D*"'u,.., Du, u, x)D/u(x) —
f(Dk_“ u,.,Du, u, x] =0

« Fully-nonlinear depends non-linearly on the highest or-
der derivatives

1.2 Examples in finance

PDE arise in many problems of quantitative finance : deriva-
tive pricing, optimal portfolio theory or aptimal execution. In
this note, we limit our study to common option pricing in the
Black-Scholes model.

canopee

empowering ecosystem

European option

In the Black-Scholes framework, a non-dividend paying as-
set price is assumed to follow a Geometric Brownian process
which can be expressed under the risk neutral measure as:

dS; = rS,dt+cTSdef (I)

A PDE for the option (call) price can be derived by applying
the Ito lemma to the option price expressed as a function of
t and S; (possible by the Markovian property of the process),
and by using the principle of portfolio replication :

3\/ 150 av? av
3f oS — 552 rSg—rV 0 @)
V(t = T, Sr)=(Sr— k)

European Basket option

A basket option is an option on several underlyings S, =
(S;,....5%) each following a Geometric Brownian in the BS
framework: dS! = rSidt + 0;S/dW/ with correlation matrix
p, that is we have Vi, j : d(W', W), = p, ;dt

In the European case, if we note ¢(St) = ¢(S}, ..., S%)
the payoff, we can derive a PDE using the multi-dimensional
Ito formula on the pricing function V which depends on
t, S},.., Sf:

3\/ o’V ;
ZUIOJ’O"’SSJBS’SSJ 1"2:.‘5(,33J —rV=20

V(T, S7) = ¢(Sr)

American option

An American option gives the right to its owner to exercise the
option at any time t < T. If we consider the same underlying
model as previously, it can be shown assuming some smooth-
ness (see Ref [1]) that the price V of the option with payoff
¢ verifies the following PDE (more precisely a variational in-
equality) :

max{%_v+ﬁv rV,¢ — V} =0 (tx)e[0,T]xR"

V(T,x)=¢(x) xeR"

(3)

i : . B 1 2.2 8
L being the differential operator £ := rx 5 + ;0%x* 7 7.

As a simple interpretation, when V(t,x) < ¢(x) the sec-
ond term must be equal to zero, that is the price verifies the
usual Black-Scholes PDE. When V(t,x) = ¢(x), the option
value equals the exercise value and is exercised. This is an
example of free boundary problem as the boundary curve
{(t.x) : V(t,x) = ¢(x)} is determined alongside the price
function V.

An American option on multiple underlyings (Basket) ver-
ifies the same form of PDE with:

2y
Z"”fp‘“ssjasas; rz 65‘

2 The finite difference method

As a number of PDE cannot be solve analytically, this is the
case for the American option, numerical methods are consid-
ered. A first and usual approach to solve PDE in finance, par-
ticularly for option pricing problem is the finite difference.

2.1 The principle

The finite difference method consists in the discretization of
the domain @ and the approximation of partial derivatives
from the Taylor formula:

JEONR (22,50 T ;
4
x+h —2f(x)+f(x—h
fﬂ(x):f() 2];}(2) f()+O(h2)

Where the terms are obtained by subtracting (resp. sum-
ming) the Taylor formulas in x + hand x — h

Let’s consider the Black-Scholes equation (2) to illustrate
the principle.

The domain of the equation (2) is 2 = [0, T] x R™. If we
want to discretize the equation, we need to set up boundary
value for S € R". This is done by first chosing a value S,
sufficiently large and discretizing over [0, T] x [0, Syax]- For
this we define {Sy, Si, ..., S; = Smax} Where §; = i6S = iSyac /1
and {t,..., ty} where t, = n&r =nT/N.

We can now apply the discretization scheme on our equa-
tion. For this we define V! the grid values to find (ie the solu-
tion of the numerical scheme) which attempt to approximate
the exact solution of the PDE: V" = V(t,, S;).

Then, we need to setup a value for the prices in § = Spa:
(V)n-o.n- Indeed, in order to calculate the approximated
derivatives in I, we need the values V., which are not de-
fined. We know from the Black-Scholes theory that for a call
we have V(t,5) ~ § — Kexp(— frT rds) when S — +0c. Thus,

we set V' = Sy — Kexp(— ff rds). We also have in § = 0:
Vi =0

As the price is only known in t = T, we need to pro-
ceed backward-in-time. There are three classical numerical
schemes for PDE.

The first one is the explicit Euler scheme which is the
following :

v“ml . vjn 1 252 vﬂTll e Zvn+1 + Vn+1 rs v'rrll vn+l vm—‘l
5t 2 05? 248

VN = (S - K)*

In this scheme, the values for (V{")o<i</ can be obtained from
the values (V" ")o<i<). It is possible to put the expression in
the following general form : V7' = a, V1 + b;V™ + ¢;V™! or
in a more condensed way V" = MV™! where M is a tridiag-
onal matrix. This makes the computation quite efficient in
comparison to other schemes. Nevertheless, we will see in

the next section that this method is potentially unstable and

canopee

that is a reason why it is not often used in practice.

The second method is the Implicit Euler scheme :

v+ VI Vi, =V
! : [P % B % R VL

vr:nﬂ a5 v"n 1) Vn
—_—
248 !

e 52 i+1
ot 27

VN - (5 - Ky

Which is of the form: V™' = gV,
vn+l = My"

In this case the values (V{")o<i<; cannot be obtained di-
rectly from values in n+1and need the resolution of the above
linear system which is more computationally demanding. Yet
this method has some advantages that we will see. We show
how to solve such system in Appendix.

The third method is the so-called Crank-Nicolson
scheme. The scheme is also an implicit scheme obtained by
taking the average of the two precedent one:

n
+ bV + VI, or

VI VP 1[0 g Vi — 2V + VI | VR VP e
5t 212 5s2 26S J
1 o2 2\/:'11 2V + VL, Vin — ViL,

i T T L A

The Crank-Nicolson scheme is a particular case of more gen-
eral §-schemes where a weighted average of the first two
schemes is taken (6 = % for CN).

2.2 consistency, stability and convergence

There are three important notions to be considered when nu-
merically solving a PDE:

« Consistency: a numerical scheme is said to be consis-
tent if when the exact solution is plugged into the nu-
merical scheme, i.e V! is replaced by V(t,, S;), the error
(the equation term) tends to zero when ét,45 — 0.

« Stability: a scheme is said to be stable if the solution of
the numerical scheme is bounded by a constant times a
boundary value. For example, in our case if 3C > 0s.a
[Vl < C||V¥||. In practice we use L or L2-norm

« Convergence: convergence ensure that the numerical
solution tend to an exact solution of the original PDE :
For V solution of the PDE and (V) solution of the nu-

(nB1,i55)—(t,5) VILS).

merical scheme we have : V'
at,05—=0

It can be shown that a consistent and stable numerical scheme
is convergent. The three previous methods are consistent.
Indeed, from Taylor expansions (4), the left term of the nu-
merical schemes is bounded by C(dt + 5%). Concerning the
stability, the Euler explicit scheme is stable only if §t and 45
meet the following CFL conditions : §t < adS?. This requires
choosing a relatively small time step and slows down the ex-
ecution. On the other hand, the two other schemes have the
advantage to be unconditionally stable. Finally, the estimate
of convergence is given by the estimate of cansistency error
(which is the truncation error, depending on dt,35%). The ad-
ditional advantage of CN is that its error in time is quadratic.

2.3 Numerical example

In this section we apply the three precedent schemes to an
European call option with following parameters : r = 0.05,
sigma=02,T=1,K=110and S, = 2K. We compare with
the true option values given by the Black-Scholes analytical
formula.

Call option values at t=0

—— BS Analytical

—— Implicit scheme
100 Explicit scheme
—— Crank-Nicelson

implicit: MAE 0.00027, Solving exec. 2.6911s|
Explicit: MAE 0,0028, Solving exec. 0.0627s
CN: MAE 1.2e-05, Solving exec. 3.9021s !

Opticn value

I 150
Underlying price

Figure 1: Initial call price obtained for a 1000 x 1000-size grid
for implicit schemes, 1000 x 100-size grid for explicit scheme
and full-grid performance

2.4 Higher dimensions and American case

For the American option equation, the application of the Eu-
ler explicit scheme to solve (3) is quite easy as we obtain the
following formulation :

max ((MV™ = V"), é(S) = V') = 0
which can be expressed as: V" = max ((MV"”),‘, &(S3)

Nevertheless, for the implicit schemes, two difficulties arise.
The first one is that applying directly these schemes to (3)
leads to a non linear system of equations for determining V"
which arise the question of well-posedness. The second is the
difficulty of convergence study. Methods exist to circumvent
the first one such as the splitting method presented in [1].
Authors of [1] also study the convergence in the more general
class of Hamilton-Jacobi equations.

For higher dimension in space as in the case of multi-
underlying options or stochastic volatility for instance, it is
still possible to apply a FD method. Yet in practice, the ex-
ponential growth of the grid (a d-dimensional problem would
need a O(NY) grid size involving as many operations) limits
the use of finite difference methods up to 3 dimensions.

3 The Deep Galerkin approach

The Galerkin method is an alternative to finite differences
which consists in choosing an approximation space for u with
a finite basis.

3.1 Principle of the Galerkin method

To introduce the Galerkin method, let’s consider our PDE un-
der the form F(x) = y where F : X — Y is an operator (pos-

canopeeé

sibly non-linear) between two functional spaces X and Y (ba-
sically Banach spaces) equipped with an inner product (-,).
We suppose there exists a linearly independent basis {¢;}7
and {1} of X and ¥ respectively. In the Galerkin method,
x € X is approximated by : x = x, == Y1, ¢:¢; and the coef-
ficient are determined by the following system of equations:

(F (Z Cff;br') i = () J=1..n

i=1

In practice the choice of basis and n are important to en-
sure the well-posedness of such system and to ensure the con-
vergence of x, toward x.

3.2 The Deep version

The Deep Galerkin method as introduced in [2] is mesh-free
algorithm where the solution of a PDE is approximated by
a neural network instead of the above linear combination of
basis. The authors apply this method to quasilinear parabolic
PDE.

Let’s consider a PDE of the following form:

du
at
uT,x)=g(x) xeQ

u(t,x) = h(t,x) (t,x)€[0,T] x 9Q

(t,x)+ Lu(t,x) =0 (t,x) € [0,T] x 2

where the second term could also be initial conditions. The
idea is to approximate the true solution u by a neural net-
work f(t,x,8), 6 being a set of weights and biases. For this
the authors of [2] introduce the following objective function :
of g

Bt(

t,x; 0) + Lf(t, x; 0) +[1f(t,;6) = h(t,) [fo ryx 00,0,

-

+|IA(T, % 6) — g()|[3,,

Where the norm is the L> norm : [If||3,, = [}, [f(y)|*v(y)dy, v
being a positive probability density on).

The first term measure how well the approximation sat-
isfies the differential operator, the second term how well it
satisfies the boundary conditions and the last term the same
for terminal/initial conditions.

Since the above objective involves integrals, a direct nu-
merical estimation and minimization of J(f) would be rapidly
unmanageable when dimension increases. Instead, the idea
is to use a stochastic Gradient descent algorithm with points
randomly drawn from the PDE domains. More precisely, it
consists in first initializing parameters 6, and learning rate
v, then performing the following steps :

[0.T]x Qv

« generate sample points s, from the different domains:
(ta x,) from [0, T] x 2, (1, v,) from [0, T] x 9Q and z,
from Q2 according to corresponding densities vy, 14, 1.

» compute the square error :
2
L6, 50) = (35t 25300) + £t 3002)) (£ Yo 00) = (T,)
(F(T, zy;6) — g(zn))2

« perform a gradient descent: 8., =8, — a,VyL(0,,s,)

« repeat 1-3 until some convergence criterion is satisfied.

A similar procedure with some adaptations is also proposed
by the authors to solve the Free-boundary problem (3) for
American-style options.

The network architecture adopted by Sirignano and
Spiliopoulos [3] for f is the following :

S'=a(W' x+hb")

Z = o(U x+ wHlShy b

Gl = g(Us" x + Wels! 4 p&l)

RU = a(U . x + WISt 4 o)

H = o (UM x + WhIS @ RY) + b
SHMo(1-GheH+Zlos [=1,.,L
f(t,x,0) = WS+ b

Where (denotes the element-wise multiplication, L the num-
ber of layers (originally, the authors take three layers includ-
ing one hidden). Here x is the spatial vector completed with
the time dimension, that is x := (t, x)

Let’s develop the rational and some intuition behind this
choice. One first notices that the architecture is similar to
LSTM (Long Short Term Memory) and Highway network.
LSTM is a kind of recurrent neural network which overcomes
the gradient vanishing problem. The gradient vanishing arises
for deep architectures when the loss derivative with respect
to weights in the first layers is too small to update properly
these weights (this is due to successive derivative multipli-
cations in backpropagation chain rules). Thus, this deteri-
orates and slow down the learning. LSTM as well as High-
way introduce a notion of memory which controls how many
information (gradient) should pass directly from a layer to
another through the use of different gates (with their own
weights). The optimal portion of information that should
passed is learned by the network. In detail, the gates Z and
G control how much information from previous layer need to
be passed to the next layer, the hidden state H involving the
reset gate R acts as a memory and controls how many infor-
mation to forget from the previous layer. In each DGM layer,
the original input x is also used in the calculation and pre-
vents the gradient vanishing of the output with respect to x.
Additionally, the authors argue that including the repeated
element-wise multiplication of non-linear function of the in-
puts helps to capture the "sharp turn" present in the payoff.

3.3 Convergence of deep Galerkin

The authors of [2] state and demonstrate some important
convergence results which motivate the use of neural network
to approximate the solution of quasilinear PDE.

Denoting N'A" the class of single-layer feedforward neu-

ral networks with nunits and " = argminJ(f). they show first
feN n
that under certain assumptions: J(f") = 0, as n = o

then that f*" — vasn— oo in LA([0, T] x), p < 2
The proof relies on regularity properties of £ and on
the universal approximation power of neural network which

canopee

states that any sufficiently regular function on a com-
pact subset of R¥ can be approximated by an arbitrarily
wide single hidden layer feedforward NN (in other words,
NN =5 NN is dense on compacts of C"(R) if 0 €
C™(R)).

4 The probabilistic approach

In the two previous sections, we used deterministic ap-
proaches for solving a PDE. In this section, we present the
probabilistic approach which consists in solving a PDE by its
stochastic representation. This approach is the common way
to solve high dimension PDE.

4.1 The stochastic representation of PDE

In this section, we briefly present the link between PDE and
Backward stochastic differential equation (BSDE). A detailed
study of BSDE can be found in reference.

We are interested in solving a semilinear (parabolic) PDE
of the following form :

%(t, x) + Lu(t, x) + f(t, x, u(t,x), oD u(t,x)) =0 (t,x) € [0, T] xR

u(T,x)=g(x) xeR?

where Lu := b(x)Dyu + Tr(co(x)D2u) is a linear operator.
This form of PDE arise in option pricing as for instance the
European-like options of section 1.2.

Let X be the solution of the following SDE and F the nat-
ural filtration of its Brownian:

dX, = b(X)dt + o(X)dW,)

Let u be a solution to the PDE. We want to characterise the
dynamic of Y; = u(t, X,). Then, for any couple (¢, x) we will be
able to find a representation u(t,x) = u(t, X{"™) = Y{* where
X' is the solution of (5) such as X; = x. Assuming u is smooth
enough and applying the Ito lemma to Y; gives:

P
d, = (6—;‘@, X) + Lult, x,)) dt + Deu(t, X)o (X)d W,

= —f(t, X, Y, a(x)Dyult, Xp))dt + Dyu(t, X)o (X,)d W,

Considering the terminal conditions and defining
Z; = Dyu(t, X;)o(X;), we obtain the following BSDE:

dYg = *f(t, Xr, Yr, Z,)dt + Zde;
Yr = g(Xr)

where the pair of processes (Y, Z) appears to be a solution to
this equation. The well-posedness of (6) needs further Lips-
chitz and regularity conditions on f and g. It is possible to
prove (see reference [3]) that under certain assumptions, the
BSDE (6) is indeed a stochastic representation of our PDE,
that is finding u is equivalent to find (Y, Z) in some sense.
More precisely, the semilinear PDE is associated to the sys-
tem of equations formed by (6) and (5) with initial setup which
is a so-called Forward Backward SDE (FBSDE).

(6)

Note: In the particular case of linear PDE (that is f is lin-
ear in x, y, z the stochastic representation corresponds in fact
to the classical Feynman-Kac theorem where the solution of
the PDE can be expressed as a conditional expectation (Ref
[3]) and can be estimated with Monte-Carlo simulations on
X, often used in option pricing,

4.2 The Deep BSDE scheme

In this section, we want to solve the above BSDE representa-
tion. The FBSDE system (5)+(6) can be discretized using an
Euler scheme. Let’s defineagridm:={fp =0 < 1 < ... < t, =
T} and denote At; := t;,; — t;. We have then :

X0, = XPBXD)AL + o(XD)AW;, - XT =X 0
Yo = Yy, + FXE, Yo, Z)AG — Z,AW,

where X™ is the solution to the Euler scheme,
AW, := W, — W, and the terminal condition Y7 is approx-
imated as Y7 ~ g(XT). The classical numerical method to
solve it consists in applying separately the followings to the
second equation in (7):

« Take the conditional expectation on both sides gives:
Y, = E[Y,, [F]+ f(X], Y, Z,)At,.

+ Multiply by AW, and take the same conditional expec-
tation gives: 0 ~ E[Y, AW, |F.] — Z,At;

Combining the two relations previously obtained leads to the
following backward scheme to be solved :

A W,,

Z; = E[Y; |-7:rr

Ye = Y::Jfr,- +f(XF, YL Z0)AL

with the terminal condition YF ~ g(X7). This is an implicit
scheme and solving it implies the computation of the condi-
tional expectations. These last are usually approximated by
quantization or Least-Square regression.

In the deep learning approach, the equation (7) is consid-
ered forward-in-time instead. We start from an estimation of
the initial value }, >~ Yy = u(0, X;) and parameterize the val-
ues (Z Jo<i<n—1 by a family of feed forward neural networks:
Z, ~ Zi(Xy,; 6;) where the values X, are taken as input of the
networks and 8; is a set of weights and biases (Wl", bf)lggj.
The objective function to minimize over 8 := (Y, 0y, ..., 6,) is
then the difference between the reconstructed dynamics and
the terminal condition:

2
J©) =E|Y7 — g(x7)|
To Solve the problem we perform the following steps :

« Construct and initialize the neural networks parame-
ters (8;); and .

« forward diffuse X; by generating Monte-Carlo paths
(X", ..., X{")M_, at the discretization dates. Each samples
(X{"o<m<m will act as a training set for the network Z;.

canopeeé

« Forward induction : compute subsequently the values :

Yg’m = Vo

Yom = yim— (XD, Y™ Z{XT50)) At + ZAXT0) AW,

W et Y2 — X

« Update parameters)}, and (#;); by backpropagation and
gradient descent.

« compute the terminal loss: L(#) =

« repeat until convergence the three last steps or the four
last steps in case of mini-batch gradient descent (M be-
coming the batch size).

In order to update parameters 8;, we need to compute 91/94;
which implies the calculation of 6Yg'm/39; values. One can
find by recurrent calculation from Y, /36,_ the following
expression for pathwise gradients which can then be calcu-
lated by automatic differentiation techniques:

8Yf€:m 3f m yH,m 62 m
3—9;:(7 (Xh Yh ,Z)dt;) 96, AW

XH(

J=i+1

(XY zj)mj)

where 0Z,/00; are calculated by backpropagation through
the network Z;. A relation for the derivatives avglm/ayo can
also be obtained for the update of).

Another possibility is to stack the networks into one as in
reference [4]. In this case, solving the problem is equivalent
to train a single neural network where the paths {X; }o<i<—1
and {AW, }o< i<, are the inputs and the value 'ﬁ’ﬁ is the out-
put. The initial value of interest Jy ~ u(0, X;) and Z, are train-
able variables of the network and the family of feed forward
networks previously described are now subnetworks that out-
put intermediary values Z,(X,;6,). The figure 5 of the Ap-
pendix helps to visualize this global architecture.

After training, a new set of paths is generated and a last
forward step into the network enable to recover the value Y,
and YE'"’, 1 < t; < t, for exposure profile (which could be
used for xVA computation).

4.3 The deep backward DP scheme

The deep backward dynamic programming scheme (DBDP) is
an alternative to the Deep BSDE proposed by the authors of
Ref [6]. The principle is to consider the equation (7) backward-
in-time, starting from the terminal condition. Then approxi-
mate simultaneously at each step (Y, Z,) with neural net-
works: Yy, =~ Vi(Xy;mi) and Zy, >~ Z(X,; (), minimizing over
8; := (m;, ¢;) the following:

07) =E | Viia(Xy.3 7ie1) — VilXes mi)
+ f (X, VilXsmi), 2iXe; G)) Aty —

where §; = (i, g:,-) is a solution to the local minimization prob-
lem at step ;.

For a better efficiency, at each time step, the weights and
biases of the current neural network are initialized using the
trained weights and biases from the previous network (trans-
fer learning).

Zi(X; G)AW, [

5 Numerical application

In this section, we apply the deep learning methods of the two
last sections fist to the same European call option of section
2.3 then to a higher dimension problem with an European bas-
ket option. The algorithms are implemented in Python using
Tensorflow 2.

European call

Call option values at t=0

—— BS Analytical
—— DGM
100 DGM with boundary conditions

Error on 10 x 100 gl’id values
DGM: MAE 0.20269
DGM with boundary conditions: MAE 0.36916

wvalue

Option

x 150
Underlying price

Figure 2: Initial call price obtained for a DGM with 3 layers,
tanh activation after 100 sampling step of 20 mini-batch size

European basket call

« For the DGM approach, the computation of second order
derivatives in the PDE becomes rapidly inefficient as the di-
mension increase. To overcome this, we use a trick to approx-
imate the Hessian (Ref [5]) by finite differences of first order
derivatives. The authors of [2] also propose a similar approach
based on Monte-Carlo simulation.

+ The BSDE for our basket option is the following :

d
dV(t, X)) = rV(t, X,)dt + Z gkx;‘g—v(r, X,)dW¥
X
k=1

d
gXr) = V(T. X7) = (5 Y X - K)
k=1

Which is then Euler-discretized using 100 steps. The two
approaches were implemented for this case (multiple net-
works and the single connected network of [4]). The sec-
ond case turned out to be more efficient in practice. In our
case, each sub-network for Z approximates the vector-valued

deltas Zi(X,;0) ~ (g—;(n, xﬂ.))

+

Results are summa-

1<k<d
rized below.
d asset Eur Basket option
K=100, T=1, r=0.05, S = 100, 7;=0.2, pj;;j = 0.25
model ty price exec. time
d=10 Monte-Carlo 7.305 conf: [7.283-7.327]
DGM 7.347 27min21s
Deep BSDE 7.306 4min56s
d=100 Monte-Carlo 6.858 conf: [6.838-6.876]
Deep BSDE 6.837 41min54

canopee

For the DGM, 20 sampling steps were used with 10 batch size.
For the deep BSDE, we used 2 hidden layers with d + 10 units
as in [4], 4000 iterations of 64 batch of paths for d = 10 and
10000 iterations for d = 100. Finally, this last methods was
faster, more precised and more scalable in high dimension.
Yet, the efficiency and convergence are sensible to the choice
of the initial value range for Y;, learning rate and batch size
and slow down when the dimension increases. The learning
rate has to be properly adjusted during the training progress
for more efficiency. The graphs in Appendix show the conver-
gence aspect of the different Deep learning models.

Conclusion

In this note, we have presented some way of solving PDE that
arise in option pricing with a focus an recent approaches with
deep learning. We particularly developed two methods, one
using a deterministic approach, the second using a stochastic
approach. These methods were applied to european-like op-
tions. The tested options obviously have more efficient ways
to be priced in practice but the tests shows that in these sim-
ple cases, the deep learning approach can be precised and
solve the problem in a reasonable time in comparison with
other numerical PDE methods in higher dimension. They be-
comes interesting for complex equations such as non-linear
ones that arise in American-like option pricing or stochastic
control problems. Applying these methods to such problems
may be future work.

Appendix

Solving the tridiagonal system for implicit FD

In the case of implicit scheme of finite difference, we need to
solve the following tridiagonal system : V™' = MV where

by a0 0
aq b] 1 0 s 0
M= 0 (5] bz G s 0
S T e

is a tridiagonal matrix.

A solution is to use the LU decomposition. That is we can
write M = L- U where L is a lower triangular and U an upper
triangular matrix. L and U are chosen as following :

1 0 .+« v 0 dy wy oo --- 0
i L 1 0] - 0

M ‘. s i *)) . n

o --- 0 [j'_‘| 1 0 cor .. 0 dr_1

which then reads u; = ¢, di = bo, i = a;/di_y and d; =
b; = f,-u;_l.
We can now write our system as
Vel - MV = LUV = L (UVY)

and solve first L-x = V™' then U- V" = x which are triangular
systems easier to solve.

Learning curve for Numerical application

Learning curve

terations

Figure 3: Learning curve for Deep BSDE scheme for d =

Basket option

Learning curve DGM

= total loss
— differential loss
—— terminal loss

Loss

Quadratic

5 5 10 5 1 1
sampling iterations

¥ 0 value

10

Figure 4: Learning curve of the DGM for d = 10 Basket option

Yo — Yor— [N/ -/ M/ %
3 ¥ L= L3
2y — Z;, — Z; — = Zy-1
I
MLP, MLP, MLPy_,
xto [| xh xla] xl||-|
AW, — AW, — AW, — aw,

Figure 5: Architecture of the single network version of Deep

BSDE

canopeeé

References

[1] O.Bokanowski T. Leliévre Y. Achdou. Partial differential
equations in finance. 2007.

[2] Justin Sirignano and Konstantinos Spiliopoulos. Dgm:
A deep learning algorithm for solving partial differential
equations. 2018.

[3] Nicolas Perkowski. Backward stochastic differential
equations: an introduction. 2019.

[4] Jiequn Han Weinan E and Arnulf Jentzen. Deep learning-
based numerical methods for high-dimensional parabolic
partial differential equations and backward stochastic
differential equations. 2017.

[5] Danilo Naiff Gabriel Jardim Ali Al-Aradi, Adolfo Correira.
Solving nonlinear and high-dimensional partial differen-
tial equations via deep learning. 2018.

[6] Xavier Warin Céme Huré, Huyén Pham. Deep backward
schemes for high-dimensional nonlinear pdes. 2020.

Nous sommes Canopee, un cabinet de conseil
indépendant, spécialiste en Finance, DATA
et transformation digitale.

Nous sommes I'empowering ecosystem! Un écosystéme en per-
pétuel mouvement.

Un écosysteme qui donne le pouvoir a nos collaborateurs, nos
projets et nos clients de se nourrir de 'émulation

collective pour lui donner de la force.

Depuis 2009, nous intervenons dans les secteurs de la BFI de
I'Asset Management, la banque privée ou de détail, les

services financiers et I'assurance et cela auprés de clients tels
que SG, HSBC,BNP Paribas ou encore ALLIANZ Gl et

AXA IM. Des écosysteémes réglementaires et spécifiques qui ont
été nos premiers terrains de jeu.

C'’est ici que nous avons su développer notre agilité, nos
compétences, notre sens de lI'engagement. Aujourd’hui, nous
grandissons et continuons a nous investir et nous engager sur
des écosystemes spécifiques, techniques, mais diversifiés tels
que l'industrie, le retail ou encore la pharma.

Toujours autour de nos 3 expertises que sont la finance, la data

et la transformation digitale.

WWW.Canopee-group.com

canopee

empowering ecosystem

