





Introduction

Microscopy plays an indispensable role in biomedical re-
search. With the development of optics and informatics, ad-
vanced microscopy technologies have opened a new perspec-
tive for biomedical researchers. Potentially, the power of these
technological developments in microscopy is increased ten-
fold when combined with the diversity of fluorescence micro-
scopy modalities and artificial intelligence through machine
and deep learning methods. An important biological applica-
tion of microscopy and artificial intelligence is the classifica-
tion of cells to recognize their phenotypes based on their indi-
vidual spatial characteristics such as shape, texture, size, etc.

In this note, we aim to present an overview of supervised
classical machine learning and deep learning approaches used
for 2D cell image classification. First, we show the classifica-
tion workflow in the traditional machine learning approach
as well as in the deep learning approach. Then, we describe
the most commonly used methods. Finally, we compare these
methods for a real use case of cancer cell image classification.

1 Classical machine learning VS deep
learning : What is the key diffe-
rences?

Classical machine learning and deep learning are subfields
of artificial intelligence. Both machine learning and deep lear-
ning methods tend to automate repetitive tasks, with the least
amount of error, by using a set of learning algorithms (super-
vised or unsupervised learning processes) to analyze data, in-
terpret it, learn from it, and make the best possible decisions
based on those learnings [1].

Classical machine learning algorithms use statistical stra-
tegies and fundamental principles of computer science to
make machines learn from structured data (features). The tra-
ditional machine learning workflow includes human inter-
vention and uses traditional handcrafted feature definition
to solve a problem. However, deep learning structures algo-
rithms in layers to create an "artificial neural network" that
can learn and make intelligent decisions on its own directly
from large volumes of unstructured data such as images, au-
dio, or video. These deep learning networks attempt to learn
high-level features from data incrementally and eliminate the
need for domain expertise and basic feature extraction (see
Figure 1). For instance, if a traditional machine learning al-
gorithm returns an inaccurate prediction, a machine learning
expert must step in and adjust features and other variables to
achieve accuracy. In contrast, deep learning algorithms can
determine whether or not the prediction is accurate and ad-
just its weights automatically through the network.

Another key difference between deep learning and tradi-
tional machine learning is its performance as the scale of the
data increases. While machine learning algorithms work with
small to medium-sized data, larger data is required for deep
learning algorithms. Thus, when the data is small, deep lear-
ning algorithms do not perform as well, with a risk of overfit-
ting.
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2 Classical machine learning me-
thods for image classification

In this section, we describe the steps of the workflow of
traditional machine learning represented in the Figure|1] We
describe the feature extraction methods commonly used for
2D image classification and present the classification algo-
rithms that are eventually used to classify images from the
extracted features.

2.1 Feature Extraction in image processing

In the field of computer vision and image processing, fea-
ture extraction is the process of transforming the raw pixel
values of an image into more meaningful and useful informa-
tion that can be used directly in machine learning. It yields
better results than applying machine learning directly to the
raw input image, which is usually large and contains complex
and redundant information. Thus, feature extraction step is
considered part of the dimensionality reduction process [2].

There are several types of features that can be processed
from an input image, such as shape, color, texture, pointillist
features, etc [3, 4]. These features are selected based on the
application and content of the input image to be classified. In
this note, we will focus only on describing the commonly used
textural feature methods for microscopy image classification.

2.2 Textural features extraction methods

There is a wide range of textural features extraction me-
thods [5] and there is no proof of optimality for any tool. The
most popular methods are detailed in the following.

Gray Level Co-ocurrence Matrix (GLCM) Gray level co-
occurrence matrix (GLCM) is a classical statistical approach
that can well describe second-order statistics of a texture
image. GLCM was firstly introduced by [6] and is essentially a
two-dimensional histogram in which the (i, j)th element is the
frequency of pixel intensity i co-occurring with pixel intensity
J. A co-occurrence matrix P has a dimension of n x n, where n
represent the gray level in an image and it is specified by the
relative frequencies C(i, j, d, #) in which two pixels, separated
by a distance d, occurs in a direction specified by the angle ¢
(usually 6 : 0, 45, 90 and 135 degrees), one with gray level i
and the other with gray level j (see Figure@. To characterize
the textures in an image, a set of 14 Haralick coefficients sum-
marizing the co-occurence matrix P is then computed. They
are detailed in the following :

1. Sum average :
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Ficure 1 - Classical machine learning VS Deep learning workflow.
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FIGURE 2 - Principle of the computation of the gray level co-
occurrence matrix (GLCM).

In order to calculate the above features, it is necessary to
define the following statistics :
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Local Binary Patterns (LBP) Local binary patterns are
also among the most used texture descriptors in classification
tasks [7]. For each central pixel position coordinate (x, y) of
the image, the local binary pattern (LBP) indicates a sequen-
tial set of the binary comparison of its value with the P neigh-
bors in a circle of radius R around the central pixel. The LBP
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assigns to each neighbor the value 0 or 1 if its value is smal-
ler or greater than the pixel placed at the center, respectively.
The resulting decimal value of the generated binary number
replaces the central pixel value and it can be expressed as fol-
lows,

P=1
LBP(x,y) = 3 2" (in — ixy), (15)

n=0

where iy, is the gray value of the central pixel and i, denotes
the n'" neighboring one. Besides, the function bz) is defined
as follows,

1, ifz>0
s {u, ifz<0. (16)

The frequency of occurrences of each decimal code is then cal-
culated over each region and used as a texture descriptor (see

Figure|3).
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FiGure 3 - Principle of extraction of LBP textural features from
a 2D image with neighborhood and radius pairs : (P = 4,
R=1),(P=28R=1)and (P = 16, R = 2) and the resul-
ting decimal codes.

Scattering transform (SCATNET) A scattering transform
defines a signal representation which is invariant to transla-
tions and potentially to other groups of transformations such
as rotations or scaling. It is also stable to deformations and is
thus well adapted to image and audio signal classification [8].
A scattering transform is implemented with a convolutional
network architecture, iterating over wavelet decompositions
and complex modulus. Figure [4|shows a schematic view of
a scatter transform network working as a feature extractor.
The scatter vectors Z,, at the output of the first three layers
m = 1,2,3 for an input image f are defined by,

Zf ={If| + ¢}
Zf ={-- . [f x ol %6, } (17)
Zof = {--+, |If * Yiol¥nel * 01+ },




where the symbol * denotes the spatial convolution, |- | stands
for the L; norm, ¢ is an averaging operator, ;4 is a wavelet di-
lated by 2’ and rotated by 6. The range of scales j = {1,-- -, J}
and the number of orientations ¢ = {0,7/L,--- ,m(L — 1)/L}
are fixed by integers J and L. The number of layers is between
m = 1to m = M. A visualization of the Gabor filter bank used
to extract SCATNET features and of a cell image at the out-
put of the scattering transform array with 3 layers (m) for 4
scales (/) and 8 orientations (L) is shown in Figurei] A Mat-
lab toolbox for extracting features from images by scattering
transform is available here : SCATNET.

input image f
]

Feature vector

Feature extraction by scattering transform
e---»  Convolution by wavelet

——’ Averaging and concatenation
. Nonlinear Modulus operator

FIGURE 4 - Schematic layout of the images feature extraction
based on the scattering transform with three layers. The fea-
ture vector at the output is the scatter vector Z,f of the last
layer of Equation 17 after transposition.

Gabor [idas

Ficure 5 - Filter bank and images at the output of scattering
transform network for each layer m of the scatter transform.

2.3 Classifiers

In the classical image classification pipeline, classification
tasks are approached based on a classifier that is trained on
the extracted features to automatically classify the images
into two or more sets of classes. There are many classifica-
tion algorithms available in the literature, such as decision
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tree, random forest, logistic regression classifier, Bayes classi-
fier, support vector machines (SVM), K-nearest neighbors, etc.
[9] but there is no proof of optimality for any classifier. The
classification task generally depends on the application and
the nature of the available dataset.

In this section, we will focus on the widely used classifier
for image classification which is the Support Vector Machine
(SVM) [10]. Initially, the SVM was designed as a classifica-
tion algorithm that can only handle linear classification pro-
blems. SVMs are based on the idea of finding an hyperplane
that best divides a dataset into two classes, as shown in Fi-
gure [6/A. it aims to separate the data using a boundary as
simple as possible, so that the distance between the different
groups of data and the boundary that separates them is maxi-
mum. This distance is also called the margin and the support
vectors being the data closest to the frontier. The technique of
margin maximization makes it possible to guarantee a better
robustness to noise and thus a more generalizable model. The
notion of boundary assumes that the data are linearly sepa-
rable, which is rarely the case. To overcome this, researchers
improved the SVMs to solve the non-linear classification pro-
blems by relying on the use of kernels. These mathematical
functions allow to separate the data by projecting them into
a higher dimensional vector space (see Figure[6.B).
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FiGURE 6 - Principle of Support Vector Machines (SYMs). (A)
In this two-dimensional space, the "boundary” is the black
line, the "support vectors" are the surrounded points (closest
to the boundary) and the "margin” is the distance between
the boundary and the blue and red lines. (B) SVMs allow to
project the data into a higher dimensional space via a kernel
function to separate them linearly.

3 Classification based deep learning
method

Deep learning based image classification algorithms
mostly relys on the Convolutional neural networks (CNN).
They are algorithms, which are particularly useful for image
analysis, have more complex network structure and more po-
werful feature learning and feature expression abilities than
traditional machine learning methods [11]. They are the fun-
damental and basic building blocks for the most existing deep
learning architectures used for image recognition such as the
DenseNet [12], VGG16 [13], ResNet [14], etc. The structure of
a CNN consists of a succession of layers : an input layer (the
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FiGure 7 - Basic architecture of a convolutional neural network (CNN).

image at the input of the network), an output layer with an
output activation function (the decision of the network) and
a hidden layer composed of many convolutional layers, cor-
rection layers (activation functions), pooling layers and fully
connected or dense layers (see Figure . The description of
the components of a CNN architecture is as follows :

— The convolutional layer : is the key component of convo-
lutional neural networks, It is used to extract a set of
features in the images received at the input of the CNN
by a filtering operation (with n filters). At the output
of this layer, activation maps are generated indicating
where are located the pixels with the most discrimina-
ting descriptors. Contrary to traditional methods, the
filter weights are not pre-defined according to a par-
ticular formalism but learned by the network during
the training phase. These weights are randomly initiali-
zed and then optimized by backpropagation of the gra-
dient.

— The activation function : is a key part of CNN design. It
is a non-linear function applied to the activation maps
at the output of the convolution layers. By making the
data non-linear, it facilitates the extraction of complex
features. The modern default mostly used activation
function for convolutional layers is the Rectified Li-
near Activation (ReLU) function as it is less susceptible
to vanishing gradients that prevent deep models from
being trained.

— The pooling layer : it consists in reducing the image size
while preserving their important characteristics. It re-
duces the number of parameters and computations in
the network. This improves efficiency and avoids over-
fitting. Moreover, this pooling layer allows the extrac-
tion of contexts at different image scales.

— The fully connected layer (FC) : it is used as a decision
layer in the CNN architecture. It consist of a set of neu-
rons that input vector containing the pixels of the flat-
tened, corrected and reduced images by pooling. The
weights of this layer (FC) are adjusted in the same way
as the weights of the filters of the convolution layer :
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during the training phase, by backpropagation of the
gradient.

— The output activation function : the choice of activation

function at the output layer will define the type of pre-
dictions the model can make. For exemple, in regres-
sion problems, the linear output activation function is
typically used to directly return the weighted sum of
the input. However, in classification problems, the soft-
max function is widely used to produce a vector of va-
lues that sum to 1.0 and can be interpreted as class pro-
babilities.

— The loss function : it specifies how the training of the

network penalizes the difference between the predic-
tion and the true values. Various loss functions adapted
to different tasks can be used. For a classification pro-
blem, for instance, we cite the catergorial cross-entropy
(CCE, Eq. [18) for multi-class image classification pro-
blems, and the binary cross-entropy (BCE, Eq. '_19),
which is a specific case of the CCE, for binary classi-
fication tasks (only two classes : [0,1]).

The CCE is defined as follow,

J
CCE == yic loglpic), (18)

c=1

with, J denotes the number of classes, y;. is a binary
indicator (0 or 1) that indicates whether the class ¢ for
the sample i is correct and p;. denotes the predicted
probability for that sample. While the BCE could be
defined as the following,

BCE = —[y; log(p)) + (1 — y;) log(1 — p))].  (19)

4 Use Case : classification of cancer

cells

We compared the performance of each previously descri-
bed classification method on the basis of a use case of high-
throughput real time cancer cell screening. The dataset used,




the configuration of the classification methods, and the re-
sults are described below.

4.1 Image acquisition and dataset

The cells used in this use case are h\TERT-immortalized hu-
man mammary epithelial cells IMEC WT), xenograft-derived
primary tumor cells (XD), and lung metastasis-derived cells
(MD). All cell lines are transduced with PGK-H2B mCherry
lentiviral vector (central emission wavelength A.,, = 610 nm),
as result cells express the mCherry H2B recombinant pro-
tein in the nucleus. Furthermore, the XD and MD cell lines
were obtained by injecting orthotopically IMEC cells overex-
pressing MYC carrying also the PIK3CA H1047R mutation in
NOD/SCID mice as described in [15].

Multi-class cell images were acquired with a microfluidic
light-sheet fluorescence microscopy system [16] with a cell
flow speed of 140 nl/min corresponding to 5 cells/s. The to-
tal amount of the used dataset in this study is 1380, 2236 and
1890 images for WT, XD and MD cell types respectively. An
illustration of the 2D cell images is shown in the Figure 8,

Ficure 8 = An example of 2D images of the three cell types.
Yellow scale bar = 5 um.

4.2 Configuration of classification methods

In order to compare the classification of the three cell
classes, we propose to perform the classification on textural
feature spaces followed by an SVM classifier with a cubic
kernel (chosen as it gives the highest classification perfor-
mance) [10]. We also add a deep learning based convolutional
neural network (CNN) for 2D image classification. We empi-
rically optimize the hyperparameters of the used methods as
well as the architecture of the CNN and they are implemen-
ted as follows :

— GLCM : gray level co-occurance matrix were computed
from each cell image with a neighbhor distance d = 16
pixels. 14 haralick coeficients were then computed for
each cell image. These features were used to train and
test the SVM classifier.

— LBP : for the present use case, the local binary pat-
tern features were extracted with the neighborhood
size P, optimized empirically and found to be optimal
at P = 16, while the radii was set to R = 2.

— SCATNET : we used the Gabor filter as the mother
wavelet with the scattering transform parameters that
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were optimized in an empirical way with 3 layers for 4
scales and 8 orientations of the filters (see Figure|5).
— Deep learning CNN : we used here a VGG16 [13] for
the classification of the 2D images trained with a
Tesla V100-DGXS-32GB GPU. Briefly, a VGG16 archi-
tecture consist of 13 convolution layers divided to 5
convolution blocks and 3 fully connected layers with
(4096,4096,nc) neurons respectively, with nc is the num-
ber of classes equal to 3. It has a Max pooling layer
of size 2 x 2 for each convolution block. It uses the
softmax function as the output layer and Relu activa-
tion function is applied to all hidden layers. We trained
the VGG 16 model with the following optimized hyper
parameters : filter size=3 x 3, filters number for the
convolution blocks respectively= (64, 128, 256,512, 512),
batch size= 32, number of training epochs= 100, lear-
ning rate= 0.0001.
In order to provide sufficient amounts of data, a data
augmentation step was used on the training sets. The
augmentation operation contained only geometric
transformations such as horizontal and vertical flip-
ping and a random rotational transformation between
0 and 359° (see Figure 9). In addition, a regularisation
step based on early stopping and best model weights
saving was added during the training to avoid the mo-
del over-fitting. We used the categorical cross entropy
(CCE, see Eq. [18) as a loss function during model trai-
ning. A weight were also automatically included for
each cell class during loss function computation to
deal with the class imbalance.

Input images Augmented images

Ficure 9 - Examples of image augmentation based on geome-
trical transformations.

The feature extractions and classification pipeline has
been applied for each cell image. The number of extracted
features of each described method is shown in the Table 1.
In order to deal with the class imbalance, we used the stra-
tified 10-folds cross-validation method to quantify the classi-
fication accuracy. The final accuracy performance was com-
puted as the average of the measured 10-folds accuracies for
each method.




TasLE 1 - Images classification performances (% of Accuracy), number of features and computational time (in seconds computed
from test images) for textural feature spaces and CNN methods. Gray-colored table cells represents the highest accuracy values

and the green colored table cell is the fastest method.

Methods Performance (%) Nb of features Extraction time Classification time
LBP 875 £13% 243 0.34 46x10°°
GLCM 826 £13% 14 0.06 23x 1078
SCATNET 925 £13% 417 0.9 69 x 107°
CNN 952 £14% 107 x 10° 1.6%x10°°
LBP GLCM SCATNET CNN
¢ 124 a g % 49
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Ficure 10 - Confusion matrices for the cells classification computed as the sum of all confusion matrices of test images during
the 10—folds cross validation method for each classifical approach (LBP, GLCM and SCATNET) and deep learning CNN method.

4.3 Results and discussion

The classification performances regarding the three cell
classes WT, XD, and MD, based on the textural and CNN fea-
ture spaces are presented in Table 1| Similarly, the confusion
matrices showing the number of truly and falsely classified
cells for each applied method are presented in Figure|10|

First, for the classical machine learning classification ap-
proach, the best cell classification performance was found
when scattering tranform method is used with an accuracy
of 92.5 %. This overcome the LBP and GLCM accuracies of
87.5% and 82.6% respectively. This is justified by the fact that
the SCATNET extract features at a multiple cell scale level (see
Figuee 5) compared to LBP and GLCM which are monoscale
methods.

Second, for the deep learning approach, the classification
performance outperform the classical approach with an accu-
racy of 95.2%. This obtained high accuracy value is due to the
high-level features accessible via the CNN architecture.

In addition, as we are looking for a real time cell acqui-
sition and classification. We compared the feature extraction
and classification times for the tested strategies. These com-
putation times are shown in Table 1/and they were obtained
with an Intel Core i7-6700HQ CPU @ 2.60 GHz for the clas-
sical feature extraction approaches and with a Tesla V100-
DGXS-32GB GPU for CNN deep learning approach. Although
the classification efficiency is high for images with the classi-
cal SCATNET classification approach, the computation time is
still not compatible with a real time application given that the
needed time to extract and classify 5 cells is about 4.5 seconds,
i.e. larger then 1second needed to acquire them. On the other
side, for the CNN approach, where the classification accuracy
is slightly better then the SCATNET method, the classification
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time of one cell is very fast (1.6 x 107, i.e. compatible with
an application of real time screening of cells (time of 8 x 10~*
seconds for the classification of 5 cells less than 1 seconds the
time needed to acquire them).

As a consequence, this comparison allows us to consider
that the classification based on CNN method of cell images
acquired with a cell flow speed of 140 nl/min could be sui-
table for real time high-throuput classification of the cells.

Conclusion

In this note, we presented an overview of machine lear-
ning and deep learning classification methods. We compared
these approaches based on a real use case of multi-class clas-
sification of fluorescence microscopy cell images. Based on
the results obtained for this use case, the CNN method using
high multi-scale features outperforms the conventional me-
thods with an accuracy of 95.2%. In this note, the classification
tasks were performed on 2D images, it will be interesting to
compare the results of the methods for 3D volume classifica-
tion microscopy cell images using 3D variants of the presen-
ted methods such as LBP-TOP and 3D GLCM for the classical
methods and 3D CNN for the deep learning approach.
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