





Introduction

Expecting combined classifiers to perform better than a sin-
gle classifier is an important guideline of Machine Learning.
Therefore, we can expect a better classification performance
when we have numerous decision trees from the same data
set, as opposed to having only one decision tree. For instance,
the authors in [1] show empirically that a random forest com-
posed of 100 trees yields a signicative (although small) im-
provement in Accuracy. In fact, techniques such as Random
Forests and Bagging, base their predictions on the combina-
tion of the outcomes of all the decision trees that compose
them.

These two algorithms rely heavily on the decision tree
technique. For more information on the decision tree algo-
rithm, you can look at [2]. These algorithms (Random For-
est and Bagging) draw with replacement n elements from the
original data set. They repeat the process k times to create
k different (yet very similar) samples. Afterwards, for every
sample a decision tree is created. However, there are some dif-
ferences (which we will explain in this note) in the way these
trees get generated by each algorithm.

The Random Forest algorithm was initially designed as
an alternative to Bagging in order to achieve better results.
Nonetheless, there’s no theory which guarantees such result.
While the Random Forest might be expected to perform bet-
ter than Bagging, there might be data sets whose structure is
better fitted for the bagging algorithm. The expected superi-
ority of the Random Forest (and Bagging) on decision trees is
also an empirical result. For instance, in [3] a modified version
of the decision trees outperforms the Random Forest.

The objective of this note is to benchmark the perfor-
mance (in terms of accuracy) of these two algorithms, for dif-
ferent numbers of trees and for a specific type of datasets.
A corrected version of the student test (see [2] p. 159) is then
used to test whether the mean of the performance gaps is sig-
nificant or not.

More specifically, the 8 data sets we consider in this study
are of a small size (inferior to 1000 observations). Secondly,
they have less than 10 explanatory variables. Finally, the ex-
plained variable in all these data sets takes only two values
(ex. 0 and 1).

We conclude that despite the number of trees used to
develop our algorithms, there are no significant differences
in terms of Accuracy between the two algorithms. In the
following section we present and explain these two algo-
rithms. In section 3 we talk about the train/test split and
cross-validation. In section 4 we display our methodology
and the related research. In section 5 we present our results.
In the last section we state the conclusions of our research.

canopee

empowering ecosystem

1 Explanation of the algorithms

1.1 The Bagging method

Suppose you have a sample of n elements (Ey, ..., E,), where
each element E; for i € 1,...,n has the following struc-
ture. Furthermore, Xj; € Rforj € 1,...,kand i€ 1,...,n
Whereas, Y; € 0,1,...[for i € 1,...,n, such variable repre-
sents the number of our classes/labels.

When we perform the bagging algorithm, we need to de-
termine the number of decision trees. Such number is a hyper
parameter of the Bagging algorithm and can only be deter-
mined through the process of parameter tuning. That is, you
need to try different values until you find the most perform-
ing one. This process is called hyper parameter search and
there are techniques advising how to perform it efficiently.
These techniques aren’t the goal of this note so we won’t talk
about them. For a general overview of these techniques, their
advantages and downfalls,see [4].

Now let's explain the algorithm. Suppose that we decided
to have T trees. The bagging algorithm consists in repeating
the following process T times:

1. We extract with replacement n elements from our orig-
inal sample of size n.

2. We build a decision tree algorithm given the sample at
step 1.

Obviously, at the end of such a process we have T decision
trees. Now, suppose you have an element. Suppose further-
more that we know the value of its explanatory variables but
we don’t know the value of its explained variable and we aim
at predicting it using the Bagging algorithm. To do so, the
bagging algorithm proceeds as follows:

1. For each of the T trees predict a class/label for the ele-
ment.

2. Look at all the classes predicted by the T trees and
choose the modal class.

1.2 The Random Forest method

The samples of the bagging method tend to be very similar,
for obvious reasons. Furthermore the variables on which ev-
ery tree does the cuts tend to be very similar. Therefore the
trees composing the Bagging algorithm are highly correlated.
Such correlation affects our predictions negatively. The ran-
dom forest algorithm comes as a potential solution to avoid
such problem. More specifically, at each cut of each tree, the
random forest algorithm limits the number of features (vari-
ables) where the cut can happen. Let’s look at the above ex-
ample, where each E element has k features among which we
can do the cut. Every time the algorithm has to perform a cut
in a tree, it randomly determines p features (p<k, usually p
is the square root of k) among which the cut should happen.
The trees obtained with such a method don’t suffer from cor-
relation. Moreover Breiman proves theoretically in his paper




that even when we increase the number of trees to infinity,
the random forest algorithm doesn’t suffer from over-fitting.
For more information see [5].

2 The Train-Test Split/Cross-Validation

When required to build an algorithm on a given data set,
the first thing we do is the random division of the data set
elements into the training part and the testing part. More
precisely, the training data set is used to build the algorithm
whereas the testing set is used to analyze how well our al-
gorithm performs with data it has never seen before. Both
of these sets are fundamental when assessing the quality of
an algorithm for a specific task. There is no specific ratio for
the train/test division. Nonetheless an advisable one would
be 70% for the training data set and 30% for the testing one.
60%-40% is another plausible combination. The Train-Test
Split technique is recommended when the size of your data-
set is relatively big (ex. superior to 1000) is advised to use
when the size of your data-set is relatively big (ex. Superior
to 1000).

For smaller sample sizes another technique called cross-
validation can be used instead of the Train-Test Split. The
most used cross-validation forms are the 5-fold and 10-fold
cross-validations. Let’s explain the 5-fold cross-validation.
Such technique consists in randomly dividing your data into 5
groups. Group 1Data is to be used as a testing set. Groups 2-5
are used as the training set. The same process is repeated 5
times with every time using a different (and never used before)
group as a testing set and the rest of the groups as training
sets. In the end you average the performance of the 5 test-
ing sets in order to evaluate the performance of the algorithm
with your data.

3 Methodology and Related Re-
search

We took 8 data sets from the sites [6] and [7]. All these data
sets had a small sample (less than 1000 observations), less
than 10 explanatory variables and an explained variable tak-
ing only two possible values (ex. 0 and 1). More specifically,
the datasets were: Blood Transfusion ([6]), Diabetes ([6]), Im-
munotherapy ([7], [8], [9]), Cryotherapy ([7], [8], [9]), Hab-
berman ([6]), visualizing_environmental ([6]), fri_c3_100_5
([6]) and hayes-roth([6]). For each of these datasets, we
looked at the performance of the Bagging algorithm and the
Random Forest algorithm for different numbers of trees. More
precisely the numbers of trees that we analyzed were 2, 5, 10,
20, 100, 200, 500, 1000, 4000.

Since the size of the data sets was small, we used the
cross-validation to measure the performance of our algorithm
in terms of accuracy. Moreover, instead of using a simple
cross-validation we used the repeated cross-validation. More
specifically we used the 10-fold cross validation repeated 5
times. For every iteration, we randomly split the data into
10 groups. Then we implemented the 10-fold cross validation

canopee

technique. After 5 iterations, this technique (i.e. repeating
the 10-fold cross-validation 5 times) gave us 50 different re-
sults in total. In the end we averaged these 50 results to eval-
uate the performance of each algorithm. Many sources ad-
vise the use of repeated cross validation instead of the simple
cross validation (see [10] and [11]). Furthermore the authors
in [10] assert that the evaluation and selection of models re-
quires this technique. Their study focuses on a specific type
of data set (QSAR datasets). On the other hand authors in
[12] state that while the number of repeated cross validations
grows, the confidence intervals of accuracy tend to be nar-
rower. Nonetheless, the true value (true Accuracy) is outside
of such interval. They use different repetition numbers like
10, 30 etc... with 10 being the smallest. We chose 5 as a num-
ber which would give us a sufficiently large sample of data
for the hypothesis tests and more robust results (than the 10
times repeated cross-validation).

In order to test whether the mean difference in terms of
accuracy is significant we use a corrected version of the stu-
dent test. For more information you can see ([2] p.159) at
the 95% level of confidence. More specifically for a given tree
number and a dataset we’ll obtain 50 Accuracy results for
the Random Forest algorithm and 50 Accuracy results for the
Bagging algorithm. Afterwards we do the difference between
the respective accuracies and we obtain a sample of 50 Accu-
racy differences. We calculate the mean of these differences.
The Corrected Student Test consists in analyzing whether the
mean of these differences is significantly different from zero
or not.

Such comparison between the two algorithms is novel to
the best of our knowledge. Research papers such as [13], [14],
[3], [15], [16], [17], [18] and [19] treat problems which are
connected to our research. For instance, authors in [19] con-
cluded that the efficient number of trees for random forests
in terms of the Area Under Curve measure (a performance
measure different from Accuracy) resides between 64 and 128
trees. Furthermore, [16] is considered as one of the most clas-
sical papers of algorithm comparison. Nevertheless, the pa-
per being relatively old it doesn’t analyze algorithms such as
Bagging and Random Forests. Authors in [14] and [3] do a
similar comparison of the algorithms as the authors in [16].
Paper [15] can be seen as one of the most complete papers
of algorithm comparison. In fact it compares 179 classifiers
from 121 datasets. Authors in [18] follow a similar methodol-
ogy compared to the above papers. The novelty of this paper
resides in the comparison of algorithms once noise has been
injected in the data.

Finally, paper [13] can be seen as an improvement of paper
[1]. As a matter of fact, the authors compare the algorithms
of Bagging and Random Forest for a fixed number of trees
(1000 trees). And they use the Student test to check whether
the differences (of the Accuracy scores obtained after cross-
validation) are significant. While this aspect of their research
is similar to ours there are some fundamental differences be-
tween our methodologies. First, we use different datasets
which have a very specific structure (size inferior to 1000,
no more than 10 explanatory variables and explained vari-
able takes only two values). Secondly, instead of using simple




cross-validation we use repeated cross-validation which gives
us a larger sample of data (50 instead of 10) which is more
convenient to perform Student-like tests. Thirdly, we use a
corrected version of the Student test which avoids the “artifi-
cial increase” of the test statistic as a result of the large sam-
ple. By doing so, we avoid falsly rejecting H0 (mean difference
of Accuracies between the two algorithms = 0) as a result of
the increase of the sample size. Futhermore, the confidence
level for this test is 95% instead of 99%, which proves to be a
stronger proof given the results we get later (If we don’t re-
ject HO at the 95% confidence level we're not going to reject
it at the 99% confidence level but not vice-versa). Forthly, and
most importantly, we compare the results (the average Ac-

trees (and not for a single number of trees).

4 Results

In this section we show and compare the performances of the
random forest algorithm and the bagging algorithm through-
out all the datasets and for different numbers of trees, in terms
of Accuracy. The last row of each table shows whether the dif-
ferences in terms of performance (mean Accuracy) between
the two algorithms are significant or not after applying the
corrected version of the Student Test (for more information
on this test see [2] p.159).

curacy) between the two algorithms for different numbers of Note: The Accuracy values are expressed in %

Table 1: Habberman ([6]) dataset —> 3 explanatory variables and 306 instances

Algorithm/Trees 2 5 10 20 100 200 500 | 1000 | 4000

Random Forest | 72.7 | 7333 | 74.2 | 73.6 | 74.05 | 73.85 | 73.86 | 74.22 | 73.36

Bagging 7352 | 7243 | 734 | 73.76 | 7418 | 73.19 | 734 | 739 | 7393
Significant No No No | No No No No No No

Table 2: visualizing_environmental ([6]) dataset —= 3 explanatory variables and 111 instances

Algorithm/Trees 2 5 10 20 100 200 500 | 1000 | 4000

Random Forest | 64.89 | 66.83 | 64.52 | 65.92 | 66.42 | 67.12 | 67.32 | 65.94 | 67.94

Bagging 64.58 | 64.82 | 67.48 | 66.68 | 66.89 | 6691 | 66.7 | 6798 | 68.97
Significant No No No No No No No No No

Table 3: fri_c3_100_5 ([6]) dataset —> 5 explanatory variables and 100 instances

Algorithm/Trees 2 5 10 20 | 100 | 200 | 500 | 1000 | 4000
Random Forest | 712 | 726 | 76 | 76.2 | 77.2 | 75.8 | 78.4 | 78.2 | 77.2
Bagging 702 | 744 | 752 | 768 | 776 | 742 | 774 | 778 | 758
Significant No | No | No | No | No | No | No | No No

Table 4: hayes-roth ([6]) dataset —> 4 explanatory variables and 132 instances

Algorithm/Trees 2 5 10 20 100 200 500 | 1000 | 4000

Random Forest | 75.19 | 75.46 | 80.78 | 82.21 | 83.6 | 84.22 | 82.74 | 83.33 | 83.79

Bagging 7692 | 79.27 | 81.79 | 83.52 | 84.05 | 84.19 | 84.14 | 84.12 | 83.48
Significant No No No No No No No No No

Table 5: Blood Transfusion([6]) dataset —> 4 explanatory variables and 748 instances

Algorithm/Trees 2 3 10 20 100 200 500 | 1000 | 4000

Random Forest | 76.85 | 77.89 | 77.51 | 77.32 | 77.38 | 77.94 | 77.06 | 77.75 | 77.91

Bagging 78.77 | 784 | 78.29 | 78.32 | 78.69 | 78.66 | 78.46 | 78.55 | 78.63
Significant No No No No No No No No No
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Table 6: Diabetes ([6]) dataset —> 8 explanatory variables and 768 instances

Algorithm/Trees 2 5 10 20 100 200 500 | 1000 | 4000
Random Forest | 72.89 | 74.86 | 75.61 | 75.59 | 75.8 | 75.62 | 75.67 | 75.75 | 75.3

Bagging 752 | 759 | 75.72 | 7582 | 7564 | 76.2 | 75.62 | 75.8 | 75.75
Significant No No No No No No No No No

Table 7: Immunotherapy ([15,18,19]) dataset —> 7 explanatory variables and 90 instances

Algorithm/Trees 2 5 10 20 100 200 500 | 1000 | 4000

Random Forest | 80.89 | 81.56 | 83.33 | 84 | 8356 | 84 | 8378 | 84 | 83.56
Bagging 82.89 | 82.67 | 84.67 | 84.89 | 84.22 | 83.78 | 83.33 | 82.89 | 82.89
Significant No No No No No No No No No

Table 8: Cryotherapy ([15,18,19]) dataset: — 6 explanatory variables and 90 instances

Algorithm/Trees 2 5 10 20 100 200 500 | 1000 | 4000

Random Forest | 82.88 | 85.78 | 86.67 | 86 89.56 | 88.22 90 90.89 | 91.33

Bagging 83.33 | 84.44 | 84.89 | 85.11 | 85.11 | 85.11 | 85.33 | 84.22 | 83.78
Significant No No No No No No No No No

Conclusion

The superiority of an algorithm [13] compared to another de-
pends on numerous factors such as the structure of the al-
gorithm and also the dataset at hand. In this paper we con-
clude that there aren’t significant differences between the al-
gorithms of Bagging and Random Forest in terms of Accuracy,
for every number of trees and data set that we use (as long as
the data sets fulfill the conditions specified at the beginning
of our paper). Therefore, it could be more efficient to use one
of these two algorithms. Like many other conclusions in ma-
chine learning, our results remain empirical and they can be
further consolidated by doing a similar study with other data
sets fulfilling the same conditions as the data sets in this pa-
per.
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